Experimental determination of salinity, temperature, growth, and metabolic effects on shell isotope chemistry ofMytilus eduliscollected from Maine and Greenland

Paleoceanography - Tập 22 Số 2 - 2007
Alan D. Wanamaker1, K. J. Kreutz1, Harold W. Borns1, D. Introne1, Scott Feindel2, Svend Funder3, Paul D. Rawson4, Bruce J. Barber5,4
1Climate Change Institute and Department of Earth Sciences, University of Maine, Orono Maine, USA
2Darling Marine Center; University of Maine; Walpole Maine USA
3Geological Museum, University of Copenhagen, Copenhagen, Denmark.
4School of Marine Sciences, University of Maine, Orono Maine, USA
5Now at Galbraith Marine Science Laboratory, Eckerd College, St. Petersburg, Florida, USA.

Tóm tắt

To study the effects of temperature, salinity, and life processes (growth rates, size, metabolic effects, and physiological/genetic effects) on newly precipitated bivalve carbonate, we quantified shell isotopic chemistry of adult and juvenile animals of the intertidal bivalveMytilus edulis(Blue mussel) collected alive from western Greenland and the central Gulf of Maine and cultured them under controlled conditions. Data for juvenile and adultM. edulisbivalves cultured in this study, and previously by Wanamaker et al. (2006), yielded statistically identical paleotemperature relationships. On the basis of these experiments we have developed a species‐specific paleotemperature equation for the bivalveM. edulis[T °C = 16.28 (±0.10) − 4.57 (±0.15) {δ18OcVPBD −δ18OwVSMOW} + 0.06 (±0.06) {δ18OcVPBD −δ18OwVSMOW}2; r2= 0.99; N = 323; p < 0.0001]. Compared to the Kim and O'Neil (1997) inorganic calcite equation,M. edulisdeposits its shell in isotope equilibrium (δ18Ocalcite) with ambient water. Carbon isotopes (δ13Ccalcite) from sampled shells were substantially more negative than predicted values, indicating an uptake of metabolic carbon into shell carbonate, andδ13Ccalcitedisequilibrium increased with increasing salinity. Sampled shells ofM. edulisshowed no significant trends inδ18Ocalcitebased on size, cultured growth rates, or geographic collection location, suggesting that vital effects do not affectδ18OcalciteinM. edulis. The broad modern and paleogeographic distribution of this bivalve, its abundance during the Holocene, and the lack of an intraspecies physiologic isotope effect demonstrated here make it an ideal nearshore paleoceanographic proxy throughout much of the North Atlantic Ocean.

Từ khóa


Tài liệu tham khảo

10.1016/S0016-7037(02)01203-6

10.1130/0091-7613(1983)11<655:STCATD>2.0.CO;2

10.1007/978-3-642-65703-0_15

10.1029/98PA00070

10.1016/S1571-0866(04)80190-8

10.1029/2004GC000890

10.1515/9781501509346-011

Craig H., 1965, Stable Isotopes in Oceanographic Studies and Paleotemperatures, 161

10.1016/0016-7037(78)90199-0

10.1016/S0016-7037(99)00020-4

10.1016/0031-0182(86)90106-9

10.1126/science.154.3751.851

10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2

Erez J., 1978, Vital effect on stable‐isotope composition seen in foraminifera and coral skeletons, Science, 273, 199

Feyling‐Hanssen R. W.(1955) Stratigraphy of the marine Late‐Pleistocene of Billefjorden Vestspitsbergen Rep. 107 186 pp. Norsk Polarinst. Tromsø Norway.

10.1029/2004GC000872

10.1242/jeb.203.22.3445

10.1016/j.gca.2005.03.010

10.1016/j.gca.2005.09.015

10.1016/j.orggeochem.2006.03.008

10.1130/0091-7613(1985)13<811:CAOICO>2.0.CO;2

10.1016/0168-9622(86)90057-6

10.1016/0031-0182(89)90117-X

10.1139/f95-851

Hjort C., 1974, The subfossil occurrence of Mytilus edulis L. in central Greenland, Boreas, 3, 22, 10.1111/j.1502-3885.1974.tb00664.x

Horibe Y., 1972, Temperature scales of aragonite‐water and calcite‐water systems, Fossils, 23, 69

10.1007/BF00390733

10.1007/s002270050485

10.1126/science.205.4402.186

10.1016/S0016-7037(97)00169-5

10.1016/S0016-7037(96)00232-3

10.1016/0031-0182(87)90064-2

10.1016/0031-0182(89)90118-1

10.1016/j.gca.2004.01.025

10.1017/S0025315400020750

10.1016/0016-7037(89)90282-2

10.1016/0016-7037(89)90283-4

10.1016/S0016-7037(96)00361-4

10.1063/1.1747785

Miller J. C., 1993, Statistics for Analytical Chemistry

10.1016/0031-0182(71)90002-2

10.1126/science.159.3817.874

10.1063/1.1671982

10.1016/S0031-0182(02)00297-3

10.1016/S0016-7037(01)00882-1

10.1021/bi00340a028

10.1126/science.199.4331.907

10.1038/hdy.1996.187

Rawson P. D., 2001, Species composition of the blue mussel populations in the northeastern Gulf of Maine, J. Shellfish Res., 20, 31

10.1016/0010-406X(67)90176-4

10.1017/S0025315400029544

10.1016/0016-7037(92)90142-6

Salvigsen O., 1992, Thermophilous molluscs on Svalbard during the Holocene and their paleoclimatic implications, Polar Res., 11, 1, 10.1111/j.1751-8369.1992.tb00407.x

10.1016/j.palaeo.2005.03.049

Seed R., 1992, The Mussel Mytilus: Ecology, Physiology, Genetics and Culture, 87

10.1038/215015a0

Shackleton N. J., 1974, Attainment of isotopic equilibrium between ocean water and the benthic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial, Colloq. Int. C. N. R. S., 219, 203

10.1038/242177a0

10.1016/j.gca.2005.03.049

10.1038/37333

10.1016/0012-8252(83)90076-4

10.1038/320520a0

10.1016/0016-7037(69)90108-2

Taylor J. D., 1969, The shell structure and mineralogy of the bivalvia, Bull. Br. Mus., 3, 1

Tebble N., 1966, British Bivalve Seashells

10.1080/00785326.1973.10430120

10.1039/jr9470000562

10.1016/S0016-7037(99)00380-4

10.1029/2005GC001189

10.1016/0025-3227(91)90234-U

10.2307/1539267

10.1016/S0016-7037(02)01140-7