Experimental determination of demand side management potential of wet appliances in the Netherlands
Tóm tắt
Từ khóa
Tài liệu tham khảo
IEA-PVPS, 2015 Snapshot of Global PV Markets, 2016.
Battaglini, 2010, Development of SuperSmart Grids for a more efficient utilisation of electricity from renewable sources, J. Cleaner Prod., 17, 911, 10.1016/j.jclepro.2009.02.006
Darby, 2013, Potential carbon impacts of smart grid development in six European countries, Energy Effic., 6, 725, 10.1007/s12053-013-9208-8
Mahmood, 2015, An overview of load management techniques in smart grid, Int. J. Energy Res., 39, 1437, 10.1002/er.3350
Wissner, 2011, The smart grid - a saucerful of secrets?, Appl. Energy, 88, 2509, 10.1016/j.apenergy.2011.01.042
Gellings, 2013, Smart grid as advanced technology enabler of demand response, Energy Effic., 6, 685, 10.1007/s12053-013-9203-0
Strbac, 2008, Demand side management: Benefits and challenges, Energy Policy, 36, 4419, 10.1016/j.enpol.2008.09.030
Verbong, 2013, Smart grids or smart users? Involving users in developing a low carbon electricity economy, Energy Policy, 52, 117, 10.1016/j.enpol.2012.05.003
Mesaric, 2015, Home demand side management integrated with electric vehicles and renewable energy sources, Energy Build., 108, 1, 10.1016/j.enbuild.2015.09.001
Van der Kam, 2015, Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study, Appl. Energy, 152, 20, 10.1016/j.apenergy.2015.04.092
Erdinc, 2015, A new perspective for sizing of distributed generation and energy storage for smart households under demand response, Appl. Energy, 143, 26, 10.1016/j.apenergy.2015.01.025
Finn, 2013, Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction, Appl. Energy, 101, 678, 10.1016/j.apenergy.2012.07.004
Gyamfi, 2012, Scenario analysis of residential demand response at network peak periods, Electr. Power Syst. Res., 93, 32, 10.1016/j.epsr.2012.07.004
Vanthournout, 2015, An automated residential demand response pilot experiment, based on day-ahead dynamic pricing, Appl. Energy, 155, 195, 10.1016/j.apenergy.2015.05.100
D’hulst, 2015, Demand response flexibility and flexibility potential of residential smart appliances: Experiences from large pilot test in Belgium, Appl. Energy, 155, 79, 10.1016/j.apenergy.2015.05.101
Stamminger, 2013, The effect of variable electricity tariffs in the household on usage of household appliances, Smart Grid Renewable Energy, 4, 353, 10.4236/sgre.2013.44042
Kobus, 2015, A real-life assessment on the effect of smart appliances for shifting households’ electricity demand, Appl. Energy, 147, 335, 10.1016/j.apenergy.2015.01.073
Palensky, 2011, Demand side management: Demand response, intelligent energy systems, and smart loads, IEEE Trans. Ind. Inf., 7, 381, 10.1109/TII.2011.2158841
Rastegar, 2012, Load commitment in a smart home, Appl. Energy, 96, 45, 10.1016/j.apenergy.2012.01.056
Muratori, 2014, Role of residential demand response in modern electricity markets, Renewable Sustainable Energy Rev., 33, 546, 10.1016/j.rser.2014.02.027
Weck, 2017, Review of barriers to the introduction of residential demand response: a case study in the Netherlands, Int. J. Energy Res., 10.1002/er.3683
C. Timpe, Smart Domestic Appliances Supporting the System Integration of Renewable Energy, 2009. http://www.smart-a.org/SmartA_Project_Final_Brochure_2009.pdf (last accessed 16.12.16).
Broman Toft, 2014, Responsible technology acceptance: Model development and application to consumer acceptance of Smart Grid technology, Appl. Energy, 134, 392, 10.1016/j.apenergy.2014.08.048
Kobus, 2013, Washing when the sun is shining! How users interact with a household energy management system, Ergonomics, 139, 451, 10.1080/00140139.2012.721522
Warren, 2014, A review of demand-side management policy in the UK, Renewable Sustainable Energy Rev., 29, 941, 10.1016/j.rser.2013.09.009
Tascikaraoglu, 2014, A demand side management strategy based on forecasting of residential renewable sources: A smart home system in Turkey, Energy Build., 80, 309, 10.1016/j.enbuild.2014.05.042
Widén, 2014, Improved photovoltaic self-consumption with appliance scheduling in 200 single-family buildings, Appl. Energy, 126, 199, 10.1016/j.apenergy.2014.04.008
Bergaentzlé, 2014, Demand-side management and European environmental and energy goals: An optimal complementary approach, Energy Policy, 67, 858, 10.1016/j.enpol.2013.12.008
Paatero, 2006, A model for generating household electricity load profiles, Int. J. Energy Res., 30, 273, 10.1002/er.1136
ECN, Energie-Nederland, Netbeheer Nederland, Energietrends 2014, 2014. http://energietrends.info/wp-content/uploads/2014/09/EnergieTrends2014.pdf (last accessed 16.12.16).
Labeeuw, 2015, Potential of active demand reduction with residential wet appliances: A case study for Belgium, IEEE Trans. Smart Grid, 6, 315, 10.1109/TSG.2014.2357343
A. Abdisalaam, I. Lampropoulos, J. Frunt, G.P.J. Verbong, W.L. Kling, Assessing the economic benefits of flexible residential load participation in the Dutch day-ahead auction and balancing market, in: 9th Int. Conf. Eur. Energy Mark., EEM 12, 2012, pp. 1–8.
A.C. de Keizer, E. Ter Horst, E.C. Molenbroek, W.G.J.H.M. Van Sark, Evaluating 5-years performance monitoring of 1 MW building integrated PV project in Nieuwland; Amersfoort; the Netherlands, in: G. Willeke, H. Ossenbrink, P. Helm (Eds.), Proc. 22nd Eur. Photovolt. Sol. Energy Conf., WIP-Renewable Energies, Munich, Germany, 2007, pp. 2960–2965.
Pöyry, Assessment of DSR price signals, 2011. http://www.poyry.co.uk/sites/www.poyry.uk/files/717_DSR_Price_signals_Report_v1_0.pdf (last accessed 16.12.16).
Faruqui, 2010, Unlocking the€ 53 billion savings from smart meters in the EU: How increasing the adoption of dynamic tariffs could make or break the EU’s smart grid investment, Energy Policy, 38, 6222, 10.1016/j.enpol.2010.06.010
G. Barbose, C. Goldman, B. Neenan, A Survey of Utility Experience with Real Time Pricing, 2004. https://eetd.lbl.gov/sites/all/files/publications/report-lbnl-54238.pdf (last accessed 16.12.16).
Tweede kamer der Staten Generaal, Voorzienings- en leveringszekerheid energie, Verslag van een algemeen overleg. (Supply and delivery of energy, Report of a general consultation), 2014.
Ministerie van VROM, Energiegedrag in de Woning, Aanknopingspunten voor de vermindering van het energiegebruik in de woningvoorraad. (Household Energy behavior, Starting points for the reduction of energy use in the housing stock), 2010.
R. Stamminger, G. Broli, C. Pakula, H. Jungbecker, M. Braun, I. Rüdenauer, C. Wendker, Synergy potential of smart appliances, report of the Smart-A project, 2008. http://www.smart-a.org/D2.3_Synergy_Potential_of_Smart_Appliances_4.00.pdf (last accessed 16.12.16).
CBS, Energieverbruik particuliere woningen; woningtype en regio’s, (Energy consumption in private households; property type and region), 2016. http://statline.cbs.nl/StatWeb/publication/?DM=SLNL&PA=81528NED (last accessed 16.12.16).
Sandels, 2014, Forecasting household consumer electricity load profiles with a combined physical and behavioral approach, Appl. Energy, 131, 267, 10.1016/j.apenergy.2014.06.048
NEDU, Verbruiksprofielen, 2016. http://nedu.nl/portfolio/verbruiksprofielen/ (Usage profiles).
Wetenswaardigheden, cijfers en statistieken over de wijk Nieuwland in Amersfoort, (Facts, figures and statistics on the district Nieuwland in Amersfoort), (n.d.). http://www.oozo.nl/cijfers/amersfoort/nieuwland.
M.J. Blom, M. Bleis, C. Leguijt, F.J. Rooijers, R. Van Gerwen, D. Van Hameren, F. Verheij, Maatschappelijke kosten en baten van Intelligente Netten, (Social costs and benefits of Smart Grids), 2012. http://www.ce.nl/publicatie/maatschappelijke_kosten_en_baten_van_intelligente_netten/1236.
Kleissl, 2013
Vaz, 2016, An artificial neural network to assess the impact of neighbouring photovoltaic systems in power forecasting in Utrecht, the Netherlands, Renew. Energy, 85, 631, 10.1016/j.renene.2015.06.061
B. Elsinga, W.G.J.H.M. Van Sark, Short-term peer-to-peer Solar Forecasting in a Network of Photovoltaic Systems, submitted for publication.
Inman, 2013, Solar forecasting methods for renewable energy integration, Prog. Energy Combust. Sci., 39, 535, 10.1016/j.pecs.2013.06.002