Experimental demonstration of frequency-agile terahertz metamaterials
Tóm tắt
Từ khóa
Tài liệu tham khảo
Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ɛ and μ. Sov. Phys. Usp. 10, 509–514 (1968).
Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).
Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).
Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).
Wiltshire, M. C. K. et al. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science 291, 849–851 (2001).
Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).
Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004).
Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).
Smith, D. R., Mock, J. J., Starr, A. F. & Schurig, D. Gradient index metamaterials. Phys. Rev. E 71, 036609 (2005).
Greegor, R. B. et al. Simulation and testing of a graded negative index of refraction lens. Appl. Phys. Lett. 87, 091114 (2005).
Padilla, W. J., Taylor, A. J., Highstrete, C., Lee, M. & Averitt, R. D. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 96, 107401 (2006).
Chen, H.-T. et al. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Opt. Lett. 32, 1620–1622 (2007).
Alù, A. & Engheta, N. Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers. IEEE Trans. Microwave Theory Techniques 52, 199–210 (2004).
Gil, I. et al. Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies. Electron. Lett. 40, 1347–1348 (2004).
Gil, I., Bonache, J., García-García, J. & Martín, F. Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators. IEEE Trans. Microwave Theory Techniques 54, 2665–2674 (2006).
Lim, S., Caloz, C. & Itoh, T. Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth. IEEE Trans. Microwave Theory Techniques 52, 2678–2690 (2004).
Kim, H., Ho, S.-J., Choi, M.-K., Kozyrev, A. B. & van der Weide, D. W. Combined left- and right-handed tunable transmission lines with tunable passband and 0° phase shift. IEEE Trans. Microwave Theory Techniques 54, 4178–4184 (2006).
Degiron, A., Mock, J. J. & Smith, D. R. Modulating and tuning the response of metamaterials at the unit cell level. Opt. Express 15, 1115–1127 (2007).
Schurig, D., Mock, J. J. & Smith, D. R. Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109 (2006).
Padilla, W. J. et al. Electrically resonant terahertz metamaterials: Theoretical and experimental investigations. Phys. Rev. B 75, 041102(R) (2007).
Averitt, R. D. & Taylor, A. J. Ultrafast optical and far-infrared quasiparticle dynamics in correlated electron materials. J. Phys. Condens. Matter. 14, R1357–R1390 (2002).
CST Studio Suite 2006B < http://www.cst.com >.