Experimental correlations of pH and ionic strength effects on the colloidal fouling potential of silica nanoparticles in crossflow ultrafiltration

Journal of Membrane Science - Tập 303 Số 1-2 - Trang 112-118 - 2007
Gurdev Singh1, Lianfa Song1
1Division of Environmental Science and Engineering, Water Science & Technology Laboratory, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore

Tóm tắt

Từ khóa


Tài liệu tham khảo

Schneider, 2005, Analysis of foulant layer in all elements of an RO train, J. Membr. Sci., 261, 152, 10.1016/j.memsci.2005.03.044

Kamrath, 2004, Assessing ultrafiltration performance problems, Filtration Sep., 41, 36, 10.1016/S0015-1882(04)00381-7

Lahoussine-Turcaud, 1990, Fouling in tangential-flow ultrafiltration. The effect of colloid size and coagulation pretreatment,, J. Membr. Sci., 52, 173, 10.1016/S0376-7388(00)80484-6

Tarabara, 2004, Effect of hydrodynamics and solution ionic strength on permeate flux in cross-flow filtration: direct experimental observation of filter cake cross-sections, J. Membr. Sci., 241, 65, 10.1016/j.memsci.2004.04.030

Davis, 1992, Modeling of fouling of cross-flow microfiltration membranes, Sep. Purif. Methods, 21, 75, 10.1080/03602549208021420

Hoek, 2002, Influence of crossflow membrane filter geometry and shear rate on colloidal fouling in reverse osmosis and nanofiltration separations, Environ. Eng. Sci., 19, 357, 10.1089/109287502320963364

Cohen, 1986, Colloidal fouling of reverse osmosis membranes, J. Colloid Interface Sci., 114, 194, 10.1016/0021-9797(86)90252-3

Hong, 1997, Kinetics of permeate flux decline in crossflow membrane filtration of colloidal suspensions, J. Colloid Interface Sci., 196, 267, 10.1006/jcis.1997.5209

Faibish, 1998, Effect of Interparticle electrostatic double layer interactions on permeate flux decline in crossflow membrane filtration of colloidal suspensions: an experimental investigation, J. Colloid Interface Sci., 204, 77, 10.1006/jcis.1998.5563

Zhu, 1997, Colloidal fouling of reverse osmosis membranes: measurements and fouling mechanisms, Environ. Sci. Technol., 31, 3654, 10.1021/es970400v

Bowen, 1995, Dynamic ultrafiltration model for charged colloidal dispersions: a Wigner-Seitz cell approach, Chem. Eng. Sci., 50, 1707, 10.1016/0009-2509(95)00026-2

Hermia, 1982, Constant pressure blocking filtration laws-applications to power-law non-newtonian fluids, Trans. I: Chem. Eng., 60, 183

Hermans, 1936, Principles of the mathematical treatment of constant pressure filtration, J. Soc. Chem. Ind., 1

Song, 2004, A new normalization method for determination of colloidal fouling potential in membrane processes, J. Colloid Interface Sci., 271, 426, 10.1016/j.jcis.2003.12.016

Singh, 2005, Quantifying the effect of ionic strength on the colloidal fouling potential in membrane processes, J. Colloid Interface Sci., 284, 630, 10.1016/j.jcis.2004.10.030

Song, 2005, Influence of various monovalent cations and calcium ion on the colloidal fouling potential, J. Colloid Interface Sci., 289, 479, 10.1016/j.jcis.2005.03.072

Singh, 2006, Cake compressibility of silica colloids in membrane filtration processes, Ind. Eng. Chem. Res., 45, 7633, 10.1021/ie060481g

Singh, 2006, Influence of sodium dodecyl sulfate on colloidal fouling potential during ultrafiltration, Colloids Surf. A: Phys. Eng. Asp., 281, 138, 10.1016/j.colsurfa.2006.02.036

Iler, 1979

Bergna, 2006

Szymczyk, 1998, Characterisation of surface properties of ceramic membranes by streaming and membrane potentials, J. Membr. Sci., 146, 277, 10.1016/S0376-7388(98)00117-3

Boussu, 2007, Influence of membrane and colloid characteristics on fouling of nanofiltration membranes, J. Membr. Sci., 289, 220, 10.1016/j.memsci.2006.12.001

Schrader, 2005, The effect of WWTP effluent zeta-potential on direct nanofiltration performance, J. Membr. Sci., 266, 80, 10.1016/j.memsci.2005.05.013