Experimental comparison of regeneration methods for CO2 concentration from air using amine-based adsorbent

Chemical Engineering Journal - Tập 404 - Trang 126337 - 2021
Jere Elfving1, Juho Kauppinen1, Mikko Jegoroff1, Vesa Ruuskanen2, Lauri Järvinen2, Tuomo Sainio3
1VTT Technical Research Centre of Finland Ltd., Koivurannantie 1, FI-40101 Jyväskylä, Finland
2Lappeenranta-Lahti University of Technology, School of Energy Systems, Skinnarilankatu 34, FI-53850 Lappeenranta, Finland
3Lappeenranta-Lahti University of Technology, School of Engineering Science, Skinnarilankatu 34, FI-53850 Lappeenranta, Finland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wang, 2017, A review of post-combustion CO2 capture technologies from coal-fired power plants, Energy Proc., 114, 650, 10.1016/j.egypro.2017.03.1209

Zhang, 2016, Parametric study on the regeneration heat requirement of an amine-based solid adsorbent process for post-combustion carbon capture, Appl. Energy, 168, 394, 10.1016/j.apenergy.2016.01.049

Chen, 2018, Emerging N-nitrosamines and N-nitramines from amine-based post-combustion CO2 capture – A review, Chem. Eng. J., 335, 921, 10.1016/j.cej.2017.11.032

Zhang, 2018, Effectiveness of amino acid salt solutions in capturing CO2: A review, Renew. Sustain. Energy Rev., 98, 179, 10.1016/j.rser.2018.09.019

Keith, 2006, Climate strategy with CO2 capture from the air, Clim. Change, 74, 17, 10.1007/s10584-005-9026-x

Socolow, 2011, Direct air capture of CO2 with chemicals – A technology assessment for the APS Panel on Public Affairs, APS Phys.

Keith, 2018, A process for capturing CO2 from the atmosphere, Joule, 2, 1573, 10.1016/j.joule.2018.05.006

Choi, 2009, Adsorbent materials for carbon dioxide capture from large anthropogenic point sources, ChemSusChem, 2, 796, 10.1002/cssc.200900036

Lee, 2015, A review on solid adsorbents for carbon dioxide capture, J. Ind. Eng. Chem., 23, 1, 10.1016/j.jiec.2014.09.001

Creamer, 2016, Carbon-based adsorbents for postcombustion CO2 capture: A critical review, Environ. Sci. Technol., 50, 7276, 10.1021/acs.est.6b00627

Sanz-Pérez, 2016, Direct capture of CO2 from ambient air, Chem. Rev., 116, 11840, 10.1021/acs.chemrev.6b00173

Climeworks CO2 capture plant, (2020). https://www.climeworks.com/our-products/ (accessed February 21, 2020).

Bajamundi, 2019, Capturing CO2 from air: Technical performance and process control improvement, J. CO2 Util., 30, 232, 10.1016/j.jcou.2019.02.002

Sumida, 2012, Carbon dioxide capture in metal-organic frameworks, Chem. Rev., 112, 724, 10.1021/cr2003272

Shi, 2020, Sorbents for the direct capture of CO2 from ambient air, Angew. Chem. Int. Ed., 59, 6984, 10.1002/anie.201906756

Qi, 2014, Sponges with covalently tethered amines for high-efficiency carbon capture, Nat. Commun., 5, 1, 10.1038/ncomms6796

Liao, 2016, Putting an ultrahigh concentration of amine groups into a metal-organic framework for CO2 capture at low pressures, Chem. Sci., 7, 6528, 10.1039/C6SC00836D

Bos, 2019, Production of high purity CO2 from air using solid amine sorbents, Chem. Eng. Sci. X., 2

Bos, 2018, Evaluating regeneration options of solid amine sorbent for CO2, Ind. Eng. Chem. Res., 57, 11141, 10.1021/acs.iecr.8b00768

Lee, 2014, Diamine-functionalized metal–organic framework: exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism, Energy Environ. Sci., 7, 744, 10.1039/C3EE42328J

Elfving, 2017, Modelling of equilibrium working capacity of PSA, TSA and TVSA processes for CO2 adsorption under direct air capture conditions, J. CO2 Util., 22, 270, 10.1016/j.jcou.2017.10.010

Azarabadi, 2019, A sorbent-focused techno-economic analysis of direct air capture, Appl. Energy, 250, 959, 10.1016/j.apenergy.2019.04.012

Wurzbacher, 2011, Separation of CO2 from air by temperature-vacuum swing adsorption using diamine-functionalized silica gel, Energy Environ. Sci., 4, 3584, 10.1039/c1ee01681d

Ahmadalinezhad, 2014, Oxidative degradation of silica-supported polyethylenimine for CO2 adsorption: insights into the nature of deactivated species, PCCP, 16, 1529, 10.1039/C3CP53928H

Jahandar Lashaki, 2019, Stability of amine-functionalized CO2 adsorbents: A multifaceted puzzle, Chem. Soc. Rev., 48, 3320, 10.1039/C8CS00877A

Buijs, 2019, Direct air capture of CO2 with an amine resin: a molecular modeling study of the deactivation mechanism by CO2, Ind. Eng. Chem. Res., 58, 14705, 10.1021/acs.iecr.9b02637

Li, 2010, Steam-stripping for regeneration of supported amine-based CO2 adsorbents, ChemSusChem, 3, 899, 10.1002/cssc.201000131

Sakwa-Novak, 2014, Steam induced structural changes of a poly(ethylenimine) impregnated γ-alumina sorbent for CO2 extraction from ambient air, ACS Appl. Mater. Interfaces, 6, 9245, 10.1021/am501500q

Chaikittisilp, 2011, Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air, Energy Fuels, 25, 5528, 10.1021/ef201224v

Wijesiri, 2019, Desorption process for capturing CO2 from air with supported amine sorbent, Ind. Eng. Chem. Res., 58, 15606, 10.1021/acs.iecr.9b03140

Wurzbacher, 2012, Concurrent separation of CO2 and H2O from air by a temperature-vacuum swing adsorption/desorption cycle, Environ. Sci. Technol., 46, 9191, 10.1021/es301953k

Choi, 2011, Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air, ChemSusChem, 4, 628, 10.1002/cssc.201000355

Darunte, 2016, Direct air capture of CO2 using amine functionalized MIL-101(Cr), ACS Sustain. Chem. Eng., 4, 5761, 10.1021/acssuschemeng.6b01692

Sujan, 2019, Direct CO2 capture from air using poly(ethylenimine)-loaded polymer/silica fiber sorbents, ACS Sustain. Chem. Eng., 7, 5264, 10.1021/acssuschemeng.8b06203

Gebald, 2013, Stability of amine-functionalized cellulose during temperature-vacuum-swing cycling for CO2 capture from air, Environ. Sci. Technol., 47, 10063, 10.1021/es401731p

Yu, 2017, Stability of a benzyl amine based CO2 capture adsorbent in view of regeneration strategies, Ind. Eng. Chem. Res., 56, 3259, 10.1021/acs.iecr.6b04645

Vidal Vázquez, 2018, Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept, J. CO2 Util., 28, 235, 10.1016/j.jcou.2018.09.026

Kläring, 2007, Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield, Agric. For. Meteorol., 143, 208, 10.1016/j.agrformet.2006.12.002

Bao, 2018, Greenhouses for CO2 sequestration from atmosphere, Carbon Resour. Convers., 1, 183, 10.1016/j.crcon.2018.08.002

Rodríguez-Mosqueda, 2019, Low temperature water vapor pressure swing for the regeneration of adsorbents for CO2 enrichment in greenhouses via direct air capture, J. CO2 Util., 29, 65, 10.1016/j.jcou.2018.11.010

Rodríguez-Mosqueda, 2018, CO2 capture from ambient air using hydrated Na2CO2 supported on activated carbon honeycombs with application to CO2 enrichment in greenhouses, Chem. Eng. Sci., 189, 114, 10.1016/j.ces.2018.05.043

Brilman, 2013, Capturing atmospheric CO2 using supported amine sorbents for microalgae cultivation, Biomass Bioenergy, 53, 39, 10.1016/j.biombioe.2013.02.042

Neo-Carbon Food, (2020). http://neocarbonfood.fi/ (accessed March 4, 2020).

Wilcox, 2017, Assessment of reasonable opportunities for direct air capture, Environ. Res. Lett., 12, 10.1088/1748-9326/aa6de5

Elfving, 2017, Characterization and performance of direct air capture sorbent, Energy Proc., 114, 6087, 10.1016/j.egypro.2017.03.1746

Shafeeyan, 2014, A review of mathematical modeling of fixed-bed columns for carbon dioxide adsorption, Chem. Eng. Res. Des., 92, 961, 10.1016/j.cherd.2013.08.018

Kulkarni, 2012, Analysis of equilibrium-based TSA processes for direct capture of CO2 from air, Ind. Eng. Chem. Res., 51, 8631, 10.1021/ie300691c

Goeppert, 2014, Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air, ChemSusChem, 7, 1386, 10.1002/cssc.201301114

Sinha, 2017, Systems design and economic analysis of direct air capture of CO2 through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbents, Ind. Eng. Chem. Res., 56, 750, 10.1021/acs.iecr.6b03887

Serna-Guerrero, 2010, Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture: An experimental and statistical study, Chem. Eng. Sci., 65, 4166, 10.1016/j.ces.2010.04.029

Parvazinia, 2018, CO2 capture by ion exchange resins as amine functionalised adsorbents, Chem. Eng. J., 331, 335, 10.1016/j.cej.2017.08.087