Experimental assessment of tidal turbine loading from irregular waves over a tidal cycle

Samuel Draycott1, Jeffrey Steynor1, Anup Nambiar1, Brian Sellar1, Vengatesan Venugopal1
1School of Engineering, Institute for Energy Systems, The University of Edinburgh, Edinburgh, EH9 3DW, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barltrop N, Varyani KS, Grant A, Clelland D, Pham X (2006) Wave-current interactions in marine current turbines. Proc Inst Mech Eng Part M J Eng Marit Environ 220(4):195–203. https://doi.org/10.1243/14750902JEME45

Chakrabarti SK, Johnson JG (1995) Random wave-current interaction—theory and experiment. No CONF-950695—American Society of Mechanical Engineers, New York, NY (United States)

De Jesus Henriques TA, Tedds SC, Botsari A, Najafian G, Hedges TS, Sutcliffe CJ, Owen I, Poole RJ (2014) The effects of wave-current interaction on the performance of a model horizontal axis tidal turbine. Int J Mar Energy 8:17–35. https://doi.org/10.1016/j.ijome.2014.10.002

Draycott S, Davey T, Ingram DM, Day A, Johanning L (2016) The SPAIR method: isolating incident and reflected directional wave spectra in multidirectional wave basins. Coast Eng 114:265–283. https://doi.org/10.1016/j.coastaleng.2016.04.012

Draycott S, Steynor J, Davey T, Ingram DM (2018) Isolating incident and reflected wave spectra in the presence of current. Coast Eng J 1–12

Draycott S, Nambiar A, Sellar B, Davey T, Venugopal V (2019a) Assessing extreme loads on a tidal turbine using focused wave groups in energetic currents. Renew Energy 135:1013–1024. https://doi.org/10.1016/j.renene.2018.12.075

Draycott S, Nambiar A, Sellar B, Davey T, Venugopal V (2019b) Assessing extreme loads on a tidal turbine using focused wave groups in energetic currents. Renew Energy 135:1013–1024. https://doi.org/10.1016/j.renene.2018.12.075

Faudot C, Dahlhaug OG (2012) Prediction of wave loads on tidal turbine blades. Energy Proc 20:116–133. https://doi.org/10.1016/j.egypro.2012.03.014

Galloway PW, Myers LE, Bahaj AS (2014) Quantifying wave and yaw effects on a scale tidal stream turbine. Renew Energy 63(2014):297–307. https://doi.org/10.1016/j.renene.2013.09.030

Gaurier B, Davies P, Deuff A, Germain G (2013) Flume tank characterization of marine current turbine blade behaviour under current and wave loading. Renew. Energy 59:1–12. https://doi.org/10.1016/j.renene.2013.02.026

Guillou N (2017) Modelling effects of tidal currents on waves at a tidal stream energy site. Renew Energy 114:180–190. https://doi.org/10.1016/j.renene.2016.12.031

Guo X, Yang J, Gao Z, Moan T, Lu H (2018) The surface wave effects on the performance and the loading of a tidal turbine. Ocean Eng 156(May):120–134. https://doi.org/10.1016/j.oceaneng.2018.02.033

Hashemi MR, Grilli ST, Neill SP (2016) A simplified method to estimate tidal current effects on the ocean wave power resource. Renew Energy 96:257–269. https://doi.org/10.1016/j.renene.2016.04.073

Heller V (2011) Scale effects in physical hydraulic engineering models. J Hydraul Res 49(3):293–306. https://doi.org/10.1080/00221686.2011.578914

IEC TS 62600-200:2013 (2013) Marine energy–wave, tidal and other water current converters. Part 200: electricity producing tidal energy converters—power performance assessment. Standard, International Electrotechnical Commission, Geneva, Switzerland

IEC TS 62600-201:2015 (2015) Marine energy—wave, tidal and other water current converters. Part 201: tidal energy resource assessment and characterization. Standard, International Electrotechnical Commission, Geneva, Switzerland

Jonsson IG (1990) Wave-current interactions. In: Le Mehaute B, Hanes DM (eds) The sea, ocean engineering science, vol 9, chap 7. Wiley-Interscience Publications, New York, pp 65–120

Leadbetter MR (1983) Extremes and local dependence in stationary sequences. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 65(2):291–306. https://doi.org/10.1007/BF00532484

Lust EE, Luznik L, Flack KA, Walker JM, Van Benthem MC (2013) The influence of surface gravity waves on marine current turbine performance. Int J Mar Energy 3–4:27–40. https://doi.org/10.1016/j.ijome.2013.11.003

Luznik L, Flack KA, Lust EE, Taylor K (2013) The effect of surface waves on the performance characteristics of a model tidal turbine. Renew Energy 58:108–114. https://doi.org/10.1016/j.renene.2013.02.022

MacEnri J, Reed M, Thiringer T (2013) Influence of tidal parameters on SeaGen flicker performance. Philos Trans R Soc Lond A Math Phys Eng Sci 371(1985):20120247. https://doi.org/10.1098/rsta.2012.0247

Martinez R, Payne GS, Bruce T (2018) The effects of oblique waves and currents on the loadings and performance of tidal turbines. Ocean Eng 164:55–64. https://doi.org/10.1016/j.oceaneng.2018.05.057

McNaughton J, Harper S, Sinclair R, Sellar B (2015) Measuring and modelling the power curve of a commercial-scale tidal turbine. In: Proceedings of 11th european wave and tidal energy conference. Nantes, France

MeyGen Ltd (2016) MeyGen Tidal Energy Project Phase 1. Project Environmental Monitoring Programme, Technical Report. Tech. Rep. MEY-1A-70-HSE-018-I-PEMP

Milne IA, Sharma RN, Flay RGJ, Bickerton S (2010) The role of waves on tidal turbine unsteady blade loading. In: Proceedings of the 3rd international conference on ocean energy, Bilbao, Spain, pp 1–6

Milne IA, Sharma RN, Flay RGJ (2017) The structure of turbulence in a rapid tidal flow. Proc R Soc Lond A Math Phys Eng Sci 473(2204). https://doi.org/10.1098/rspa.2017.0295 , http://rspa.royalsocietypublishing.org/content/473/2204/20170295.full.pdf

Moreira RM, Peregrine DH (2012) Nonlinear interactions between deep-water waves and currents. J Fluid Mech 691:1–25. https://doi.org/10.1017/jfm.2011.436

Mullings HR, Stallard T, Payne GS (2017) Operational loads on a tidal turbine due to environmental conditions. In: Proceedings of the 12th European Wave and Tidal Energy Conference, Cork, Ireland

New Civil Engineer (2019) The MeyGen Tidal Scheme Project. https://www.newcivilengineer.com/world-view/future-of-energy-catching-the-flow/10038276.article . Accessed 20 Feb 2019

Noble DR, Davey T, Smith HCM, Kaklis P, Robinson A, Bruce T (2015) Characterisation of spatial variation in currents generated in the flowave ocean energy research facility. In: Proceedings of the 11th European wave and tidal energy conference, Nantes, France, pp 1–8

Ordonez-Sanchez S, Allmark M, Porter K, Ellis R, Lloyd C, O’Doherty T, Johnstone C (2019) Analysis of a horizontal axis tidal turbine performance in the presence of regular and irregular waves using two control strategies. J Mar Sci Eng 12:367. https://doi.org/10.3390/en12030367

Parkinson SG, Collier WJ (2016) Model validation of hydrodynamic loads and performance of a full-scale tidal turbine using Tidal Bladed. Int J Mar Energy 16:279–297. https://doi.org/10.1016/j.ijome.2016.08.001

Payne GS, Stallard T, Martinez R (2017) Design and manufacture of a bed supported tidal turbine model for blade and shaft load measurement in turbulent flow and waves. Renew Energy 107:312–326. https://doi.org/10.1016/j.renene.2017.01.068

Payne GS, Stallard T, Martinez R, Bruce T (2018) Variation of loads on a three-bladed horizontal axis tidal turbine with frequency and blade position. J Fluids Struct 83(November):156–170. https://doi.org/10.1016/j.jfluidstructs.2018.08.010

Scarlett GT, Bremer TVD, Sellar B, Viola IM (2018) Unsteady hydrodynamics of full-scale tidal turbines. 6th Oxford Tidal Energy Workshop (March)

Sellar B, Wakelam G, Sutherland DRJ, Ingram DM, Venugopal V (2018) Characterisation of tidal flows at the european marine energy centre in the absence of ocean waves. Energies 11(1):176. https://doi.org/10.3390/en11010176 , http://www.mdpi.com/1996-1073/11/1/176

Sos M, Johnston L, Walker J, Rahimian M (2017) The Impact of waves and immersion depth on horizontal axis tidal turbine performance. In: European wave and tidal energy conference, Cork, Ireland, pp 1–8, http://www.albayan.ae

Stallard T, Collings R, Feng T, Whelan J (2013) Interactions betweem tidal turbine wakes: experimental study of a group of 3-bladed rotors. Philos Trans R Soc Lond A 371(1985):1471–2962

Sutherland DRJ, Noble DR, Steynor J, Davey TAD, Bruce T (2017a) Characterisation of current and turbulence in the flowave ocean energy research facility. Ocean Eng 139:103–115. https://doi.org/10.1016/j.oceaneng.2017.02.028

Sutherland DRJ, Sellar BG, Venugopal V, Borthwick AGL (2017b) Effects of spatial variation and surface waves on tidal site characterisation. In: Proceedings of the 12th European Wave and Tidal Energy Conference. Cork, Ireland

Venugopal V, Nemalidinne R (2015) Wave resource assessment for Scottish waters using a large scale North Atlantic spectral wave model. Renew Energy 76:503–525. https://doi.org/10.1016/j.renene.2014.11.056

Venugopal V, Sellar B, Sutherland D, Borthwick A, Wakelam G (2017) Numerical modelling of combined wave, tidal current and turbulence interaction at tidal energy sites in the fall of warness, Scotland. In: Proceedings of the 12th European Wave and Tidal Energy Conference, Cork, Ireland

Walker S, Cappietti L (2017) Experimental studies of turbulent intensity around a tidal turbine support structure. Energies 10(4):1–21. https://doi.org/10.3390/en10040497

Whelan JI, Stallard TJ (2011) Arguments for modifying the geometry of a scale model rotor. In: Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK