Experimental apparatus for generating quantum degenerate gases of ytterbium atoms

Journal of the Korean Physical Society - Tập 67 - Trang 1719-1725 - 2015
Min-Seok Kim1, Moosong Lee1, Jeong Ho Han1, Yong-il Shin1
1Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Korea

Tóm tắt

We describe our experimental apparatus for generating quantum degenerate gases of bosonic 174Yb and fermionic 173Yb atoms. We use a Zeeman slower to generate a slow atomic beam and collect atoms in a magneto-optical trap formed by 556-nm laser beams without frequency modulations. Laser-cooled ytterbium atoms are transferred to a crossed optical dipole trap and evaporatively cooled to quantum degeneracy. Our system generates a Bose-Einstein condensate containing over 6 × 104 174Yb atoms or a degenerate Fermi gas of about 7 × 104 173Yb atoms at T/T F =0.8(1), where T F is the Fermi temperature of the gas. We highlight the high performance of the Zeeman slower and the home-made frequency-doubling systems for 399-nm and 556-nm lasers.

Tài liệu tham khảo

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates and A. D. Ludlow, Science 341, 1215 (2013). B. J. Bloom, T. L. Nicholson, J. R.Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley and J. Ye, Nature 506, 71 (2014). A. J. Daley, J. Ye and P. Zoller, Eur. Phys. J. D 65T, 207 (2011). X. Zhang, M. Bishof, S. L. Bromley, C. V. Kraus, M. S. Safronova, P. Zoller, A. M. Rey and J. Ye, Science 345, 1467 (2014). A. J. Daley, M. M. Boyd, J. Ye and P. Zoller, Phys. Rev. Lett. 101, 170504 (2008). F. Gerbier and J. Dalibard, New J. Phys. 12, 033007 (2010). A. V. Gorshkov et al., Nat. Phys. 6 289 (2010). S. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita and Y. Takahashi, Nat. Phys. 7, 642 (2011). S. Taie, Y. Takasu, S. Sugawa, R. Yamazaki, T. Tsujimoto, R. Murakami and Y. Takahashi, Phys. Rev. Lett., 105, 190401 (2010). M. A. Cazalilla, A. F. Ho and M. Ueda, New J. Phys. 11, 103033 (2009). S. Taie, R. Yamazaki, S. Sugawa and Y. Takahashi, Nat. Phys. 8, 825 (2012). G. Pagano et al., Nat. Phys. 10, 198 (2014). F. Scazza, C. Hofrichter, M. Höfer, P. C. De Groot, I. Bloch and S. Fölling, N. Phys. 10, 779 (2014). X. Zhang, M. Bishof, S. L. Bromley, C. V. Kraus, M. S. Safronova, P. Zoller, A. M. Rey and J. Ye, Science 19, 1467 (2014). M. Mancini et al., arXiv:1502.02495 (2015}) When the slowing laser beam focuses into the nozzle, its intensity along the Zeeman slower is given as I(x) = P/(πr 0 2)/ (1 + κx)2, where P is the laser beam’s power, r 0 is the beam’s radius at the Zeeman slower entrance, and κ = 2/L is the focusing slope determined by the machine’s geometry. In a low-intensity region, the scattering force is approximated to be F sc (z) ≃ (hκ 399Γs/2)I(z)/I s = η0ma m/(1 + κx)2, where I s is the saturation intensity for the corresponding optical transition and η0 = P/(πr0 2)/I s. From the relation [v c 2 - v 2(x)]/2 = ∫0 x dxF sc (x)/m, we obtain \(\upsilon (x) = \sqrt {\upsilon _c^2 + 2\eta o{a_m}x/(1 + 2x/L)} .\) The resonance condition requires gmFμ 0 B ZS (z) + 2πΔνs + κ399 v(x) = 0 along the Zeeman slower. H. J. Metcalf and P. V. D. Straten, Laser Cooling and Trapping (Springer, New York 1999), Chap. 6, p. 85. A. Dareau, On the road to artificial gauge fields: Ytterbium cooling, Séminaire du groupe atomes froids (2012). T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980). J. C. J. Koelemeij, W. Hogervorst and W. Vassen, Rev. Sci. Instrum. 76, 033104 (2005). M. Pizzocaro, D. Calonico, P. C. Pastor, J. Catani, G. A. Costanzo, F. Levi and L. Lorini, Appl. Opt. 53, 3380 (2014). S. Uetake, A. Yamaguchi, S. Kato and Y. Takahashi, Appl. Phys. B 92, 33 (2008). T. P. Dinneen, K. R. Vogel, E. Arimondo, J. L. Hall and A. Gallagher, Phys. Rev. A 59, 1216 (1999). R. Maruyama, Ph.D. Thesis, University of Washington (2003). J. W. Cho, H.-G. Lee, S. Lee, J. Ahn, W.-K. Lee and D.-H. Yu, Phys. Rev. A 85, 035401 (2012). A. H. Hansen, A. Khramov, W. H. Dowd, A. O. Jamison, V. V. Ivanov and S. Gupta, Phys. Rev. A 84, 011606 (2011). S. Dorscher, A. Thobe, B. Hundt, A. Kochanke, R. L. Targat, P. Windpassinger, C. Becker and K. Sengstock, Rev. Sci. Instrum. 84, 043109 (2013). J. Lee, J. H. Lee, J. Noh and J. Mun, Phys. Rev. A 91, 053405 (2015). N. W. M. Ritchie, E. R. I. Abraham, Y. Y. Xiao, C. C. Bradley and R. G. Hulet, Phys. Rev. A 51, R890(R) (1995). A. Thobe, Ph.D. Thesis, Universität Hamburg (2014). T. Fukuhara, Y. Takasu, M. Kumakura and Y. Takahashi, Phys. Rev. Lett. 98, 030401 (1999). R. Maruyama, R. H. Wynar, M. V. Romalis, A. Andalkar, M. D. Swallows, C. E. Pearson and E. N. Fortson, Phys. Rev. A 68, 011403(R) (2003). S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp and C. E. Wieman, Phys. Rev. A 62, 013406 (2000).