Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình động vật thí nghiệm và can thiệp RNA: một mối liên hệ đầy hứa hẹn cho nghiên cứu ung thư bàng quang
Tóm tắt
Mô hình động vật là trung tâm của nghiên cứu ung thư bàng quang (BC) trong phòng thí nghiệm và đồng thời, là cầu nối đến lâm sàng. Một phương pháp điều trị mới rất hứa hẹn là làm câm các gen được điều chỉnh tăng một cách bất thường trong ung thư, thông qua các phân tử RNA can thiệp nhỏ (siRNA). Việc sử dụng siRNA trong điều trị và thành công của chúng sẽ phụ thuộc phần lớn vào sự truyền đạt an toàn và hiệu quả trong môi trường sống, cũng như việc tránh các hiệu ứng không mong muốn ngoài mục tiêu. SiRNA qua đường lòng bàng quang là một chiến lược có thể là lựa chọn giao hàng tốt nhất cho ung thư bàng quang bề mặt, giống như liệu pháp miễn dịch qua đường lòng bàng quang. Hành động trực tiếp của nó có thể cho phép tiếp xúc tế bào liên tục với các nồng độ siRNA hiệu quả. Trong khi quy trình quản lý siRNA qua niệu đạo đầy hứa hẹn cho nghiên cứu ung thư bàng quang cho phép phát hiện các mục tiêu mới trong điều trị ung thư bàng quang, các chất mang qua đường lòng bàng quang tối ưu và các mục tiêu tốt nhất cho siRNA vẫn cần được xác định.
Từ khóa
#ung thư bàng quang #RNA can thiệp nhỏ #mô hình động vật #liệu pháp miễn dịch #truyền đạt in vivoTài liệu tham khảo
The American Cancer Society (2008) Overview: bladder cancer. In: How many people get bladder cancer? American Cancer Society, Atlanta. Available via ACS. http://www.cancer.org/docroot/CRI/content/CRI_2_2_1X_How_many_people_get_bladder_cancer_44.asp?sitearea. Cited 11 Sep 2008
Kroft SH, Oyasu R (1994) Urinary bladder cancer: mechanisms of development and progression. Lab Invest 71:158–174
Zeegers MP, Tan FE, Dorant E et al (2000) The impact of characteristics of cigarette smoking on urinary tract cancer risk: a meta-analysis of epidemiologic studies. Cancer 89:630–639
Granella M, Priante E, Nardini B, Bono R et al (1996) Excretion of mutagens, nicotine and its metabolites in urine of cigarette smokers. Mutagenesis 11:207–211
Grimmer G, Dettbarn G, Seidel A et al (2000) Detection of carcinogenic aromatic amines in the urine of non-smokers. Sci Total Environ 247:81–90
Zhang ZT, Pak J, Huang HY et al (2001) Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene 20:1973–1980
Zhang ZT, Pak J, Shapiro E, Sun TT, Wu XR (1999) Urothelium-specific expression of an oncogene in transgenic mice induced carcinoma in situ and invasive transitional cell carcinoma. Cancer Res 59:3512–3517
Johnson AM, Conover DL, Huang J, Messing EM, Ning R, O’Connell MJ, Rossi MA, Sun TT, Wood RW, Wu XR, Reeder JE (2006) Early detection and measurement of urothelial tumors in mice. Urology 67:1309–1314
Hicks RM (1980) Multistage carcinogenesis in the urinary bladder. Br Med Bull 36:39–46
Owens DM, Wei S, Smart RC (1999) A multihit, multistage model of chemical carcinogenesis. Carcinogenesis 20:1837–1844
Oliveira PA, Colaco A, De la Cruz PLF et al (2006) Experimental bladder carcinogenesis-rodent models. Exp Oncol 28:2–11
Yao R, Lemon WJ, Wang Y et al (2004) Altered gene expression profile in mouse bladder cancers induced by hydroxybutyl(butyl) nitrosamine. Neoplasia 6:569–577
Oyasu R (1995) Epithelial tumours of the lower urinary tract in humans and rodents. Food Chem Toxicol 33:747–755
Williams PD, Lee JK, Theodorescu D (2008) Molecular credentialing of rodent bladder carcinogenesis models. Neoplasia 10(8):838–846
Cohen SM (2002) Comparative pathology of proliferative lesions of the urinary bladder. Toxicol Pathol 30:663–671
Fukushima S, Friedell GH, Jacobs JB et al (1981) Effect of l-tryptophan and sodium saccharin on urinary tract carcinogenesis initiated by N-[4-(5-nitro–2-furyl)-2-thiazolyl] formamide. Cancer Res 41:3100–3103
Epstein JI, Amin MB, Reuter VR et al (1998) The World Health Organization/International Society of Urological Pathology consensus classification of urothelial (transitional cell) neoplasms of the urinary bladder. Bladder Consensus Conference Committee. Am J Surg Pathol 22:1435–1448
Raghavan D, Debruyne F, Herr H (1986) Experimental models of bladder cancer: a critical review. In: Alan R et al (eds) Developments in bladder cancer. Liss, Inc., New York, pp 171–208
Marceau N (1990) Cell lineages and differentiation programs in epidermal, urothelial and hepatic tissues and their neoplasms. Lab Invest 63:4–20
Limas C, Bair R, Bernhart P et al (1993) Proliferative activity of normal and neoplastic urothelium and its relation to epidermal growth factor and transferrin receptors. J Clin Pathol 46:810–816
Stewart FA (1986) Mechanism of bladder damage and repair after treatment with radiation and cytostatic drugs. Br J Cancer Suppl 7:280–291
Crallan RA, Georgopoulos NT, Sothgate J (2006) Experimental models of human bladder carcinogenesis. Carcinogenesis 27:374–381
Hicks RM, Wakefield JS (1972) Rapid induction of bladder cancer in rats with N-methyl-N-nitrosourea. I. Histology. Chem Biol Interact 5:139–152
Kunze E, Graewe T, Scherber S et al (1989) Cell cycle dependence of N-methyl-N-nitrosourea-induced tumour development in the proliferating, partially resected rat urinary bladder. Br J Exp Pathol 70:125–142
Magee PN, Barnes JM (1967) Carcinogenic nitroso compounds. Adv Cancer Res 10:163–246
Steinberg GD, Brendler CB, Ichikawa T et al (1990) Characterization of an N-methyl-N-nitrosourea induced autochthonous rat bladder cancer model. Cancer Res 50:6668–6741
Gunther JH, Jurczok A, Wulf T et al (1999) Optimizing syngeneic orthotopic murine bladder cancer (MB49). Cancer Res 59:2834–2837
Steinberg GD, Brendler CB, Squire RA et al (1991) Experimental intravesical therapy for superficial transitional cell carcinoma in a rat bladder tumor model. J Urol 145:647–653
Grippo PJ, Sandgren EP (2005) Modeling pancreatic cancer in animals to address specific hypothesis. Methods Mol Med 103:217–243
Gollapudi BB, Stott WT, Yano BL, Bus JS (1998) Mode of action considerations in the use of transgenic animals for mutagenicity and carcinogenicity evaluations. Toxicol Lett 103:479–484
Lin JH, Zhao H, Sun TT (1995) A tissue-specific promoter that can drive a foreign gene to express in the suprabasal urothelial cells of transgenic mice. Proc Natl Acad Sci USA 9:679–683
Kerr DE, Liang F, Bondioli KR, Zhao H, Kreibich G, Wall RJ, Sun TT (1998) The bladder as a bioreactor: urothelium production and secretion of growth hormone into urine. Nat Biotechnol 16:75–79
McNanley AR, Johnson AM, Flynn MK, Wood RW, Kennedy SD, Reeder JE (2009) Inherited pelvic organ prolapse in the mouse: preliminary evaluation of a new murine model. Int Urogynecol J Pelvic Floor Dysfunct 20:19–25
Reznikoff CA, Sarkar S, Julicher KP, Burger MS, Puthenveettil JA, Jarrard DF et al (2000) Genetic alterations and biological pathways in human bladder cancer pathogenesis. Urol Oncol 5:191–203
Bex A, Vooijs M, Horenblas S, Berns A (2002) Controlling gene expression in the urothelium using transgenic mice with inducible bladder specific CRE-LOX recombination. J Urol 168:2641–2644
Spruck CH III, Ohneseit PF, Gonzalez-Zulueta M, Esrig D, Miyao N, Tsai YC et al (1994) Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res 54:784–788
Akagi K, Sandig V, Vooijs M, van der Valk M, Giovannini M, Strauss M et al (1997) Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res 25:1766–1773
Saam JR, Gordon JI (1999) Inducible gene knockouts in small intestinal and colonic epithelium. J Biol Chem 274:38071–38082
Shibata H, Toyama K, Shioya H, Ito M, Hirota M, Hasegawa S et al (1997) Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278:120–123
Chong L, Ruping Y, Jiancheng B, Guohong Y, Yougang F, Jiansong W et al (2006) Characterization of a novel transplantable orthotopic murine xenograft model of a human bladder transitional cell tumor (BIU-87). Cancer Biol Ther 5:394–398
Kubota T (1994) Metastatic models of human cancer xenografted in the nude mouse: the importance of orthotopic transplantation. J Cell Biochem 56:4–8
Cohen SM, Friedell GH (1982) The mouse in biomedical research. In: Neoplasms of the urinary system, chap. 24, Academic, New York, pp 439–463
Reynolds A, Leake D, Boese Q et al (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330
White MD, Farmer M, Mirabile I et al (2008) Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc Natl Acad Sci USA 105:10238–10243
Li BJ, Tang Q, Cheng D et al (2005) Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 11:944–951
Kuijl C, Savage ND, Marsman M et al (2007) Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 450:725–730
Pereira TC, Pascoal VD, Marchesini RB et al (2008) Schistosoma mansoni: evaluation of an RNAi-based treatment targeting HGPRTase gene. Exp Parasitol 118:619–623
DiFiglia M, Sena-Esteves M, Chase K et al (2007) Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci USA 104:17204–17209
Taniguchi E, Nishijo K, McCleish AT et al (2008) PDGFR-A is a therapeutic target in alveolar rhabdomyosarcoma. Oncogene. doi:10.1038/onc.2008.255
Bessard A, Frémin C, Ezan F et al (2008) RNAi-mediated ERK2 knockdown inhibits growth of tumor cells in vitro and in vivo. Oncogene 27:5315–5325
Zheng JN, Ma TX, Cao JY et al (2006) Knockdown of Ki-67 by small interfering RNA leads to inhibition of proliferation and induction of apoptosis in human renal carcinoma cells. Life Sci 78:724–729
Zamore PD (2006) RNA interference: big applause for silencing in Stockholm. Cell 127:1083–1086
Zhao W, Xu Y, Kong D et al (2008) Tissue-selective RNA interference in prostate cancer cell using prostate specific membrane antigen promoter/enhancer. Urol Oncol doi:10.1016/j.urolonc.2008.05.003
Golshani R, Lopez L, Estrella V, Kramer M, Iida N, Lokeshwar VB (2008) Hyaluronic acid synthase-1 expression regulates bladder cancer growth, invasion, and angiogenesis through CD44. Cancer Res 68:483–491
Teng J, Wang ZY, Jarrard DF, Bjorling DE (2008) Roles of estrogen receptor alpha and beta in modulating urothelial cell proliferation. Endocr Relat Cancer 15:351–364
Stettner M, Kaulfuss S, Burfeind P, Schweyer S, Strauss A, Ringert RH, Thelen P (2007) The relevance of estrogen receptor-beta expression to the antiproliferative effects observed with histone deacetylase inhibitors and phytoestrogens in prostate cancer treatment. Mol Cancer Ther 6:2626–2633
Dong Z, Saliganan AD, Meng H et al (2008) Prostate cancer cell-derived urokinase-type plasminogen activator contributes to intraosseous tumor growth and bone turnover. Neoplasia 10:439–449
Najy AJ, Day KC, Day ML (2008) ADAM15 supports prostate cancer metastasis by modulating tumor cell-endothelial cell interaction. Cancer Res 68:1092–1099
Aoki H, Satoh M, Mitsuzuka K et al (2004) Inhibition of motility and invasiveness of renal cell carcinoma induced by short interfering RNA transfection of beta 1, 4GalNAc transferase. FEBS Lett 567:203–208
Boorjian S, Heemers H, Frank I, Farmer S, Schmidt L, Sebo T, Tindall D (2008) Expression and significance of androgen receptor coactivators in urothelial carcinoma of the bladder. Endocr Relat Cancer (Epub ahead of print)
Hara T, Miyazaki H, Lee A, Tran CP, Reiter RE (2008) Androgen receptor and invasion in prostate cancer. Cancer Res 68:1128–1135
Greenberg DA, Jin K (2005) From angiogenesis to neuropathology. Nature 438:954–959
Shinojima T, Oya M, Takayanagi A et al (2007) Renal cancer cells lacking hypoxia inducible factor (HIF)-1alpha expression maintain vascular endothelial growth factor expression through HIF-2alpha. Carcinogenesis 28:529–536
Fuessel S, Herrmann J, Ning S et al (2006) Chemosensitization of bladder cancer cells by survivin-directed antisense oligodeoxynucleotides and siRNA. Cancer Lett 232:243–254
Aigner A (2006) Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J Biotechnol 124:12–25
Aigner A (2006) Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo. J Biomed Biotechnol. doi:10.1155/JBB/2006/71659
Hacein-Bey-Abina S, von Kalle C, Schmidt M et al (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256
Sioud M, Sorensen DR (2003) Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun 312:1220–1225
Sorensen DR, Leirdal M, Sioud M (2003) Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 327:761–766
Nogawa M, Yuasa T, Kimura S et al (2005) Intravesical administration of small interfering RNA targeting PLK-1 successfully prevents the growth of bladder cancer. J Clin Invest 115:978–985
Aigner A (2007) Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl Microbiol Biotechnol 76:9–21
Hadaschik BA, Jackson J, Fazli L et al (2008) Intravesically administered antisense oligonucleotides targeting heat-shock protein-27 inhibit the growth of non-muscle-invasive bladder cancer. BJU Int 102:610–616
Jackson AL, Bartz SR, Schelter J et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637
Lander ES, Linton LM, Birren B et al (2001) International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409:860–921
Pereira TC, Pascoal VDB, Secolin R et al (2007) Strand Analysis, a free online program for the computational identification of the best RNA interference (RNAi) targets based on Gibbs free energy. Genet Mol Biol 30:1206–1208
Kumar P, Wu H, McBride JL et al (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43
Mullighan CG, Goorha S, Radtke I et al (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446:758–764
Greenman C, Stephens P, Smith R et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158
Fuessel S, Meye A, Kraemer K et al (2007) Synthetic nucleic acids as potential therapeutic tools for treatment of bladder carcinoma. Eur Urol 51:315–326