Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu thực nghiệm và lý thuyết về tinh thể propyl para-hydroxybenzoate cho các ứng dụng quang học
Tóm tắt
Propyl para-hydroxybenzoate (PHB), hay còn gọi là Propylparaben, là một hợp chất hữu cơ có thể được tạo ra từ quá trình bay hơi dung môi với dung môi như metanol. Giá trị hình học của ô đơn vị và hệ tinh thể cùng với tính chất nhóm không gian được ước lượng từ nghiên cứu XRD tinh thể đơn. Từ phổ quang học, bờ hấp thụ ở bước sóng thấp hơn được đo bằng phổ quang học khả kiến trong khoảng từ 200–1200 nm. Từ giá trị bờ hấp thụ, các tham số quang học khác nhau như khoảng cách năng lượng, hệ số tuyệt chủng với hấp thụ, độ dẫn quang học và điện, năng lượng Urbach, và giá trị độ nhạy được đo. Ngoài ra, các tham số phân tán khác nhau và độ mạnh của dao động của tinh thể PHB được đánh giá bằng cách sử dụng phương pháp dao động đơn Wemple Di-Domenico. Các tham số phi tuyến bậc ba như chỉ số khúc xạ, hệ số hấp thụ phi tuyến và độ nhạy phi tuyến được đánh giá lần lượt là 5.99 × 10−9 cm2/W, 3.41 × 10−4 cm/W, và 5.76 × 10−6 esu bằng phương pháp z-scan. Phân tích độ cứng vi mô và các tính chất cơ học khác nhau như hằng số độ cứng đàn hồi, độ bền uốn, độ bền gãy, và chỉ số giòn cũng được ước lượng. Các tính chất quan trọng cơ bản của vật chất rắn như năng lượng plasma, Penn, khoảng cách Fermi và giá trị của độ phân cực điện tử phân tử được đo và so sánh từ các phương pháp khác nhau như phương pháp dipole liên kết, quan hệ Clausius–Mossotti, và phương trình Lorentz. Tương tác giữa các phân tử của phân tử PHB được xác nhận qua nghiên cứu bề mặt Hirshfeld, và tỷ lệ phần trăm của chúng được đánh giá bằng cách sử dụng biểu đồ vân tay.
Từ khóa
#Propyl para-hydroxybenzoate #PHB #tinh thể quang học #nghiên cứu XRD #tham số quang học #phương pháp z-scan #tương tác phân tử.Tài liệu tham khảo
P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, 1st edn. (Wiley, New York, 1991)
J. Zyss, Molecular Nonlinear Optics Materials, Physics and Devices (Academic Press, New York, 1994)
C.C. Evans, M.B. Beucher, R. Masse, J.F. Nicoud, Nonlinearity enhancement by solid-state proton transfer: a new strategy for the design of nonlinear optical materials. Chem. Mater. 10, 847–854 (1998). https://doi.org/10.1021/cm970618g
D.S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, 1st edn. (Academic Press, London, 1987)
P.A. Fleitz, Nonlinear optics of organic molecules and polymers. Opt. Eng. 36, 2622 (1997). https://doi.org/10.1117/1.601490
T. Kamalesh, P. Karuppasamy, C. Senthilkumar, M.S. Pandian, P. Ramasamy, S. Verma, Growth, structural, Hirshfeld surface, optical, laser damage threshold, dielectric and chemical etching analysis of 4-dimethylaminopyridinium 4-nitrophenolate 4-nitrophenol (DMAPNP) single crystal. J. Mater. Sci. Mater. Electron. 31, 373–386 (2020). https://doi.org/10.1007/s10854-019-02536-x
D. Rezzonico, S.J. Kwon, H. Figi, O.P. Kwon, M. Jazbinsek, P. Günter, Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials. J. Chem. Phys. 128, 124713 (2008). https://doi.org/10.1063/1.2890964
B.J. Coe, S.P. Foxon, R.A. Pilkington, S. Sánchez, D. Whittaker, K. Clays, G. Depotter, B.S. Brunschwig, Nonlinear optical chromophores with two ferrocenyl, octamethylferrocenyl, or 4(Diphenylamino)phenyl groups attached to rhenium(I) or zinc(II) Centers. Organometallics 34, 1701–1715 (2015). https://doi.org/10.1021/acs.organomet.5b00193
B.J. Coe, J.A. Harris, A.K. Clays, G. Olbrechts, A. Persoons, J.T. Hupp, Quadratic nonlinear optical properties of N-aryl stilbazolium dyes. Adv. Funct. Mater. 12, 110–116 (2002). https://doi.org/10.1002/1616-3028(20020201)12:23.0.co;2-y
A. John Kiran, H.C. Kim, K. Kim, F. Rotermund, H.J. Ravindra, S.M. Dharmaprakash, H. Lim, Superior characteristics of organic chalcone single crystals as efficient nonlinear optical material. Appl. Phys. Lett. 92, 113307 (2008). https://doi.org/10.1063/1.2896640
K. Thirupugalmani, M. Venkatesh, S. Karthick, K.K. Maurya, N. Vijayan, A.K. Chaudhary, S. Brahadeeswaran, Influence of polar solvents on growth of potentially NLO active organic single crystals of N-benzyl-2-methyl-4-nitroaniline and their efficiency in terahertz generation. CrystEngComm 19, 2623–2631 (2017). https://doi.org/10.1039/C7CE00228A
S. Vasuki, R.T. Karunakaran, G. Shanmugam, Growth and physicochemical studies on 2-amino 5-bromopyridinium 4-carboxybutanoate: an organic NLO single crystal. J. Mater. Sci. Mater. Electron. 28, 12916–12928 (2017). https://doi.org/10.1007/s10854-017-7122-0
L.R. Dalton, P.A. Sullivan, D.H. Bale, Electric field poled organic electro-optic materials: state of the art and future prospects. Chem. Rev. 110, 25–55 (2010). https://doi.org/10.1021/cr9000429
B.J. Coe, S.P. Foxon, M. Helliwell, D. Rusanova, B.S. Brunschwig, K. Clays, G. Depotter, M. Nyk, M. Samoc, D. Wawrzynczyk et al., Heptametallic, octupolar nonlinear optical chromophores with six ferrocenyl substituents. Chem. Eur. J. 19, 6613–6629 (2013). https://doi.org/10.1002/chem.201204453
L.R. Dalton, P. Günter, M. Jazbinsek, O.P. Kwon, P.A. Sullivan, Organic Electro-Optics and Photonics: Molecules, Polymers and Crystals (Cambridge University Press, Cambridge, 2015)
S.R. Marder, B. Kippelen, A.K.-Y. Jen, N. Peyghambarian, Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 388, 845–851 (1997). https://doi.org/10.1038/42190
E. Raju, P. Jayaprakash, G. Vinitha, N. Saradha Devi, S. Kumaresan, Growth and characterization of 2-aminopyridinium malonate single crystal for photonic device applications. J. Mater. Sci. Mater. Electron. 32, 21155–21163 (2021). https://doi.org/10.1007/s10854-021-06614-x
S. Vediyappan, A. Raja, R.M. Jauhar, R. Kasthuri, V. Vijayan, M.S. Pandian, R. Perumalsamy, V. Gandhiraj, Synthesis, crystal growth, structure, crystalline perfection, thermal, linear, and nonlinear optical investigations on 2-amino-5-nitropyridine 4-chlorobenzoic acid (1:1): a novel organic single crystal for NLO and optical limiting applications. J. Mater. Sci. Mater. Electron. 32, 15026–15045 (2021). https://doi.org/10.1007/s10854-021-06056-5
R.P. Jebin, T. Suthan, T.R. Anitha, N.P. Rajesh, G. Vinitha, Growth and characterization of organic material 3,4-dimethoxybenzaldehyde-2,4-dinitroaniline single crystal. J. Mater. Sci. Mater. Electron. 32, 3232–3246 (2021). https://doi.org/10.1007/s10854-020-05072-1
J. Wu, Z. Li, J. Luo, A.K.-Y. Jen, High-performance organic second- and third-order nonlinear optical materials for ultrafast information processing. J. Mater. Chem. C 8, 15009–15026 (2020). https://doi.org/10.1039/D0TC03224G
K. Anitha, M. Subha, M. Tamil Elakkiya, Synthesis, growth, structural, optical, thermal and NLO studies of new organic single crystal: 3-hydroxy pyridinium 2-hydroxy benzoate. J. Mol. Struct. 1244, 130850 (2021). https://doi.org/10.1016/j.molstruc.2021.130850
S. Moshtaghi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Nanocrystalline barium stannate: facile morphology-controlled preparation, characterization and investigation of optical and photocatalytic properties. J. Mater. Sci. Mater. Electron. 27, 834–842 (2016). https://doi.org/10.1007/s10854-015-3824-3
F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation and characterization of the CuCr2O4 nanostructures via a new simple route. J. Mater. Sci. Mater. Electron. 26, 5043–5051 (2015). https://doi.org/10.1007/s10854-015-3024-1
S. Zinatloo-Ajabshir, M. Salavati-Niasari, Z. Nanostructures, Novel facile surfactant-free preparation and characterization. Int. J. Appl. Ceram. Technol. 13, 108–115 (2016). https://doi.org/10.1111/ijac.12393
S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation of nanocrystalline cubic ZrO2 with different shapes via a simple precipitation approach. J. Mater. Sci. Mater. Electron. 27, 3918–3928 (2016). https://doi.org/10.1007/s10854-015-4243-1
S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Preparation, characterization and photocatalytic degradation of methyl violet pollutant of holmium oxide nanostructures prepared through a facile precipitation method. J. Mol. Liq. 231, 306–313 (2017). https://doi.org/10.1016/j.molliq.2017.02.002
S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Simple and eco-friendly synthesis of recoverable zinc cobalt oxide-based ceramic nanostructure as high-performance photocatalyst for enhanced photocatalytic removal of organic contamination under solar light. Sep. Purif. Technol. 267, 118667 (2021). https://doi.org/10.1016/j.seppur.2021.118667
H. Safajou, M. Ghanbari, O. Amiri, H. Khojasteh, F. Namvar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Green synthesis and characterization of RGO/Cu nanocomposites as photocatalytic degradation of organic pollutants in waste-water. Int. J. Hydrog. Energy 46, 20534–20546 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.175
S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason. Sonochem. 72, 105420 (2021). https://doi.org/10.1016/j.ultsonch.2020.105420
S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Recyclable magnetic ZnCo2O4-based ceramic nanostructure materials fabricated by simple sonochemical route for effective sunlight-driven photocatalytic degradation of organic pollution. Ceram. Int. 47, 8959–8972 (2021). https://doi.org/10.1016/j.ceramint.2020.12.018
M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, M. Ghodrati, One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. J. Mater. Sci. Mater. Electron. 31, 17332–17338 (2020). https://doi.org/10.1007/s10854-020-04289-4
R.P. Jebin, T. Suthan, N.P. Rajesh, G. Vinitha, Growth and characterization of organic material 3,4,5-trimethoxybenzaldehyde single crystal for optical applications. Opt. Laser Technol. 115, 500–507 (2019). https://doi.org/10.1016/j.optlastec.2019.02.054
P.A. Franken, A.E. Hill, C.W. Peters, G. Weinrich, Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961). https://doi.org/10.1103/PhysRevLett.7.118
A.M. Fraind, G. Sini, C. Risko, L.R. Ryzhkov, J.-L. Brédas, J.D. Tovar, Charge delocalization through benzene, naphthalene, and anthracene bridges in π-conjugated oligomers: an experimental and quantum chemical study. J. Phys. Chem. B 117, 6304–6317 (2013). https://doi.org/10.1021/jp401448a
Li. Wang, J. Ye, H. Wang, H. Xie, Y. Qiu, The novel link between planar möbius aromatic and third order nonlinear optical properties of metal–bridged polycyclic complexes. Sci. Rep. 7, 10182 (2017). https://doi.org/10.1038/s41598-017-10739-7
B. Mohanbabu, R. Bharathikannan, G. Siva, Structural, optical, dielectric, mechanical and Z-scan NLO studies of charge transfer complex crystal: 3-aminopyridinum-4-hydroxy benzoate. J. Mater. Sci. Mater. Electron. 28, 13740–13749 (2017). https://doi.org/10.1007/s10854-017-7218-6
M. Krishnakumar, S. Karthick, G. Vinitha, K. Thirupugalmani, B. Babu, S. Brahadeeswaran, Growth, structural, linear, nonlinear optical and laser induced damage threshold studies of an organic compound: 2-amino pyridinium-4-hydroxy benzoate. Mater. Lett. 235, 35–38 (2019). https://doi.org/10.1016/j.matlet.2018.09.148
V. Kannan, S. Brahadeeswaran, Synthesis, growth, thermal, optical and mechanical studies on 2-amino-6-methylpyridinium 4-hydroxybenzoate. J. Therm. Anal. Calorim. 124, 889–898 (2016). https://doi.org/10.1007/s10973-015-5174-z
P. Sathya, S. Pugazhendhi, R. Gopalakrishnan, Self-assembled supramolecular structure of 4-dimethylaminopyridinium p-hydroxy benzoate pentahydrate: synthesis, growth, optical and biological properties. RSC Adv. 6, 44588–44598 (2016). https://doi.org/10.1039/C6RA00283H
S. Ambalatharasu, G. Peramaiyan, A. Sankar, R. Mohan Kumar, R. Kanagadurai, Growth, structural and nonlinear optical studies of benzimidazolium p-hydroxybenzoate crystal. Optik 127, 2255–2259 (2016). https://doi.org/10.1016/j.ijleo.2015.11.128
F. Giordano, R. Bettini, C. Donini, A. Gazzaniga, M.R. Caira, G.G.Z. Zhang, D.J.W. Grant, J. Pharm. Sci. 88, 1210–1216 (1999). https://doi.org/10.1021/js9900452
Y. Zhou, G. Matsadiq, Y. Wu, J. Xiao, J. Cheng, Propyl 4-hydroxybenzoate. Acta. Crystallogr. E 66, o485 (2010). https://doi.org/10.1107/S1600536810000139
N. Karunagaran, P. Ramasamy, R. Perumal Ramasamy, Growth and characterization of propyl-para-hydroxybenzoate single crystals. Bull. Mater. Sci. 37, 1461–1469 (2014). https://doi.org/10.1007/s12034-014-0097-z
N. Karunagaran, P. Ramasamy, Growth of propyl-p-hydroxybenzoate single crystals and its characterizations. AIP Conf. Proc. 1447, 1291 (2012). https://doi.org/10.1063/1.4710485
S.S.B. Solanki, R.N. Perumal, T. Suthan, Growth and characterization of propyl 4-hydroxybenzoate single crystal by vertical Bridgman technique. Mater. Res. Innov. 22, 144–149 (2017). https://doi.org/10.1080/14328917.2016.1266428
Y. Sun, Z. Yang, D. Hou, S. Pan, Theoretical investigation on the balance between large band gap and strong SHG response in BMO4 (M = P and As) crystals. RSC Adv. 7, 2804–2809 (2017). https://doi.org/10.1039/C6RA26568E
P. Karuppasamy, V. Sivasubramani, M. Senthil Pandian, P. Ramasamy, Growth and characterization of semi-organic third order nonlinear optical (NLO) potassium 3,5-dinitrobenzoate (KDNB) single crystal. RSC Adv. 6, 109105–109123 (2016). https://doi.org/10.1039/C6RA21590D
J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Physica Status Solidi B 15, 627–637 (1996). https://doi.org/10.1002/pssb.19660150224
A. Ashour, H.H. Afifi, S.A. Mahmoud, Effect of some spray pyrolysis parameters on electrical and optical properties of ZnS films. Thin Solid Films 248, 253–256 (1994). https://doi.org/10.1016/0040-6090(94)90020-5
M. Divya, P. Malliga, P. Sagayaraj, A. Joseph Arul Pragasam, Optical based electrical properties of thiourea borate NLO crystal for electro-optic Q switches. J. Electron. Mater. 48, 5632–5639 (2019). https://doi.org/10.1007/s11664-019-07377-2
F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324–1325 (1953). https://doi.org/10.1103/PhysRev.92.1324
R.R. Reddy, Y. Nazeer Ahammed, K. Rama Gopal, P. Abdul Azeem, T.V.R. Rao, P. Mallikarjuna Reddy, Optical electronegativity, bulk modulus and electronic polarizability of materials. Opt. Mater. 14, 355–358 (2000). https://doi.org/10.1016/S0925-3467(00)00004-5
C. Xing, Y. Zhang, W. Yan, L. Guo, Band structure-controlled solid solution of Cd1-x ZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrog. Energy 31, 2018–2024 (2006). https://doi.org/10.1016/j.ijhydene.2006.02.003
S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant incovalent and ionic materials. J. Phys. Rev. B 3, 1338–1351 (1971). https://doi.org/10.1103/PhysRevB.3.1338
M. Okutan, S. Eren San, O. Koysal, F. Yakuphanoglu, Investigation of refractive index dispersion and electrical properties in carbon nano-balls’ doped nematic liquid crystals. Physica B Condens. Matter 362, 180–186 (2005). https://doi.org/10.1016/j.physb.2005.02.009
M.M. El-Nahass, A.A.M. Farag, E.M. Ibrahim, S. Abd-El-Rahman, Structural, optical and electrical properties of thermally evaporated Ag2S thin films. Vacuum 72, 453–460 (2004). https://doi.org/10.1016/j.vacuum.2003.10.005
S. Divya, V.P.N. Nampoori, P. Radhakrishnan, A. Mujeeb, Electronic and optical properties of TiO and its polymorphs by Z-scan method. Chin. Phys. B 23, 084203 (2014). https://doi.org/10.1088/1674-1056/23/8/084203
H.M. Zeyada, M.M. Makhlouf, Role of annealing temperatures on structure polymorphism, linear and nonlinear optical properties of nanostructure lead dioxide thin films. Opt. Mater. 54, 181–189 (2016). https://doi.org/10.1016/j.optmat.2016.02.031
A.M. Alsaad, Q.M. Al-Bataineh, A.A. Ahmad, Z. Albataineh, A. Telfah, Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: a novel derived mathematical model from the experimental transmission spectra. Optik 211, 164641 (2020). https://doi.org/10.1016/j.ijleo.2020.164641
P.O. Edward, Hand Book of Optical Constants of Solids (Academic Press, New York, 1985)
A.A. Ahmad, Q.M. Al-Bataineh, A.M. Alsaad, T.O. Samara, K.A. Al-izzy, Optical properties of hydrophobic ZnO nano-structure based on antireflective coatings of ZnO/TiO2/SiO2 thin films. Physica B Condens. Matter. 593, 412263 (2020). https://doi.org/10.1016/j.physb.2020.412263
A.M. Al-Amri, S.J. Yaghmour, W.E. Mahmoud, Low temperature growth of metastable cubic CdSe nanocrystals and their photoluminescence properties. J. Cryst. Growth 334(1), 76–79 (2011). https://doi.org/10.1016/j.jcrysgro.2011.07.029
C. Balarew, R. Duhlev, Application of the hard and soft acids and bases concept to explain ligand coordination in double salt structures. J. Solid State Chem. 55, 1–6 (1984). https://doi.org/10.1016/0022-4596(84)90240-8
M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam n2 measurements. Opt. Lett. 14, 955–957 (1989). https://doi.org/10.1364/OL.14.000955
K. Nivetha, S. Kalainathan, M. Yamada, Y. Kondo, F. Hamada, Synthesis, growth, and characterization of new stilbazolium derivative single crystal: 2-[2-(2,4-dimethoxy-phenyl)-vinyl]-1-ethyl-pyridinium iodide for third-order NLO applications. J. Mater. Sci. Mater. Electron. 28, 5180–5191 (2017). https://doi.org/10.1007/s10854-016-6174-x
K. Gayathri, P. Krishnan, P.R. Rajkumar, G. Anbalagan, Growth, optical, thermal and mechanical characterization of an organic crystal: brucinium 5-sulfosalicylate trihydrate. Bull. Mater. Sci. 37, 1589–1595 (2014). https://doi.org/10.1007/s12034-014-0721-y
E.M. Onitsch, Mikroscopia 2, 131–151 (1947)
M. Ravindra, R.P. Bhardwaj, K. Sunil Kumar, V.K. Srivastava, Model based studies of some optical and electronic properties of narrow and wide gap materials. J. Infrared Phys. 21, 369–381 (1981). https://doi.org/10.1016/0020-0891(81)90045-2
D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962). https://doi.org/10.1103/PhysRev.128.2093
N.M. Ravindra, V.K. Srivastava, Electronic polarizability as a function of the penn gap in semiconductors. J. Infrared Phys. 20, 67–69 (1980). https://doi.org/10.1016/0020-0891(80)90009-3
P. Van Rysselberghe, Remarks concerning the Clausius–Mossotti law. J. Phys. Chem. 36, 1152–1155 (1932). https://doi.org/10.1021/j150334a007
R.R. Reddyy, Y. Nazeer Ahammed, Relationship between refractive index, optical electronegativities and electronic polarizability in alkali halides, III–V, II–VI group semiconductors. Cryst. Res. Technol. 30, 263–266 (1995). https://doi.org/10.1002/crat.2170300224
R.R. Reddy, Y. Nazeer Ahammed, Relation between energy gap and electronic polarizability of ternary chalcopyrites. Infrared Phys. Technol. 37, 505–507 (1996). https://doi.org/10.1016/1350-4495(95)00073-9
B. Nijboer, M. Ranne, Microscopic derivation of macroscopic van der Waals forces. II. Chem. Phys. Lett. 2, 35–38 (1968). https://doi.org/10.1016/0009-2614(68)80141-1
R.R. Reddy, K. Rama Gopal, K. Narasimhulu, L. Siva Sankara Reddy, K. Raghavendra Kumar, G. Balakrishnaiah, M. Ravi Kumar, Interrelationship between structural, optical, electronic and elastic properties of materials. J. Alloys Compd. 473, 28–35 (2009). https://doi.org/10.1016/j.jallcom.2008.06.037
P. Vasudevan, S. Sankar, S. Gokul Raj, Studies on second harmonic generation efficiency of organic material l-arginine maleate dehydrate. Optik 124, 4155–4158 (2013). https://doi.org/10.1016/j.ijleo.2012.12.036
K. Kumar, V. Charles Vincent, G. Bakiyaraj, K. Kirubavathi, K. Selvaraju, Investigations of solid state, optical, NLO, dielectric and mechanical behaviour of methyl para-hydroxybenzoate crystal. Optik 226, 165738 (2021). https://doi.org/10.1016/j.ijleo.2020.165738
S. Vediyappan, R. Arumugam, K. Pichan, R. Kasthuri, S.P. Muthu, R. Perumal, Crystal growth and characterization of semi-organic 2-amino-5-nitropyridinium bromide (2A5NPBr) single crystals for third-order nonlinear optical (NLO) applications. Appl. Phys. A 123, 780–795 (2017). https://doi.org/10.1007/s00339-017-1394-3
J. Fleming, Frontier Orbitals and Organic Chemical Reactions (Wiley, London, 1976)
S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, Crystal Explorer (Version 3.0). University of Western Australia, 2012
M.A. Spackman, D. Jayatilaka, Hirshfeld surface analysis. CrystEngComm 11, 19–32 (2009). https://doi.org/10.1039/B818330A
