Experimental and theoretical analyses on structural (monomer and dimeric form), spectroscopic and electronic properties of an organic semiconductor 2,6-dimethoxyanthracene

Springer Science and Business Media LLC - Tập 94 - Trang 1153-1167 - 2019
K Eswar Srikanth1, K Ramaiah, D Jagadeeswara Rao2, K. Prabhakara Rao3, J Laxman Naik4, A Veeraiah1, J Prashanth5
1Department of Physics, D.N.R. College (A), Bhimavaram, India
2Department of Physics, S.R.K.R. Engineering College (A), Bhimavaram, India
3New Generation Materials Lab (NGML), Department of Science and Humanities, Vignan’s Foundation for Science Technology and Research (VFSTR) (Deemed to be University), Vadlamudi, Guntur, India
4Department of Physics, University College of Science, Saifabad, Hyderabad, India
5Department of Physics, Kakatiya University, Warangal, India

Tóm tắt

In this work, a promising organic semiconductor 2,6-dimethoxyanthracene (2,6-DA) molecule was widely characterized experimentally through FTIR in the region of 4000–450 cm−1 and FT Raman in the region of 4000–50 cm−1, respectively. Theoretical calculations were performed by employing Gaussian 09 software using DFT/B3LYP/6-311++G(d,p) method. The barrier potential energy due to internal rotation optimized the structural parameters and vibrational harmonic frequencies. MOLVIB program was used to scale the theoretical frequencies for a better fit with the experimental frequencies; the rms error of 9.4 cm−1 was obtained between the observed and scaled frequencies. Geometric optimization was made for dimer in order to lend theoretical support for the existence of hydrogen bond in 2,6-DA at the same level of theory as used for the monomer. First-order hyperpolarizability, natural bond orbital analysis, molecular electrostatic surface potential and Fukui functions were calculated. Electronic properties like HOMO–LUMO energies, regeneration energy (ΔGreg), electronic injection energy (ΔGinject), light-harvesting efficiency were performed in gas phase and in different solvents to determine the shift of higher absorption wavelength, employing time-dependent density functional theory.

Tài liệu tham khảo

R J Bushby, S M Kelly and M O Neill Liquid Crystalline Semiconductors (Dordrecht: Springer) (2013) M Saleem, M Rafiq and M Hanif J. Fluoresc.27 31 (2017) Y Jiao, B Zhu, J Chen and X Duan Theranostics5 173 (2015) Y. Jeong and J Yoon Inorg. Chim. Acta381 2 (2012) B Angelov, A Angelova and R Ionov J. Phys. Chem. B 104 9140 (2000) A P de Silva, H Gunaratne, T Gunnlaugsson and P. Lynch New J. Chem.20 871 (1996) G R Martinez, F Garcia, L H Catalani, J Cadet, M C B Oliveira, G E Ronsein, S Miyamoto, M H Medeirosd and P Di Mascio Tetrahedron62 10762 (2006) L Yang, Y Liu, X Zhou, Y Wu, C Ma, W Liu and C Zhang Dyes Pigm.126 232 (2016) H Moon, Y W Jun, D Kim, H G Ryu, T Wang, K H Kim, Y Huh, J Jung and K H Ahn Chem. Asian J.11 2518 (2016) F A Tanious, T C Jenkins, S Neidle and W D Wilson Biochem. J.31 11632 (1992). S A de Silva, A Zavaleta, D E Baron, O Allam, E V Isidor, N Kashimura and J M Percarpio Tetrahedron Lett.38 2237 (1997) P Pavitha, J Prashanth, G Ramu, G Ramesh, K Mamatha and B Venkatram Reddy J. Mol. Struct.1147 406 (2017) S S Ahmed, F A T. Nisreen, M R El-Ghobashy and M Tommasin Spectrochim. Acta A152 480 (2016) C W Bauschlicher Jr Chem. Phys.448 43 (2015) A S Patil, C Uthaisar, V Barone and B D Fahlman J. Mol. Struct.448 43 (2015) K Chitoshi, F Jun, O Mikio and Y Akio Anal. Sci.9 1 (2003) A D Becke J. Chem. Phys.98 5648 (1993) C Lee, W T Yang and R G Parr Phys. Rev. B37 785 (1988) M J Frisch, G W Trucks, H B Schlegel, G E Scuseria, M A Robb and J R Cheeseman et al. Gaussian 09, Revision C.01 (Wallingford: Gaussian, Inc.) (2009) A Frisch, A B Nielsen and A J Holder Gaussview Users Manual (Pittsburg: Gaussian Inc.) (2001) G A Petersson and M A Al-Laham J. Chem. Phys.94 6081 (1991) G Litwinienko, G A DiLabio, P Mulder, H G Korth and K U Ingold J. Phys. Chem. A113 6275 (2009). I Rozas, I Alkorta and J Elguero J. Phys. Chem. A102 9925 (1998) G Fogarasi, X Zhou, P W Tayler and P Pulay J. Am. Chem. Soc.114 8191 (1992) G Fogarasi, P Pulay, J R Durig Vibrational Spectra and Structure (New York: Elsevier), vol. 14 (1991) T Sundius J. Mol. Struct.218 321 (1990) T Sundius Vib. Spectrsc.29 89 (2002) P Pulay, G Fogarasi, G Pongor, J E Boggs and A Vargha J. Am. Chem. Soc.105 7037 (1983) A Berces and T Ziegler J. Chem. Phys.98 4793 (1993) G Fogarasi, P Pulay and J R Durig (Eds.) Vibrational Spectra and Structure (Amsterdam: Elsevier), vol. 4 (1985) J B Foresman and A Frisch Exploring Chemistry with Electronics Structure Methods, 2nd edn. (Pittsburg: Gaussian, Inc.) (1996) V Krishnakumar and R John Xavier Spectrochim. Acta A61 1799 (2005) S Y Lee and B H Boo Bull. Korean Chem. Soc.17 754 (1996) K Shanshan, Z Hu, T Guodong, L Rongqing, Z Yu, Z Jianying and W Changmei Spectrochim. Acta A96 768 (2012) S Leena, K Amarendra, N Vijay, K R Srivastava and P Onkar J. At. Mol. Sci.3 212 (2011) T Joseph, H T Varghese, C Yohannan Panicker, T Thiemann, K Viswanathan, V A Christian and T K Manojkumar Spectrochim. Acta A117 413 (2014) V Krishnakumar and V Balachandran Spectrochim. Acta A63 464 (2006) P N Prasad and D J Williams Introduction to Nonlinear Optical Effects in Molecules and Polymers (New York: Wiley) (1991) F Meyers, S R Marder, B M Pierce and J L Bredas J. Am. Ceram. Soc.116 10703 (1994) F Hinchliffe and R W Munn Molecular Electromagnetism (Chichester: Wiley) (1985) D A Klienman Phys. Rev.126 1977 (1962) A Ahmad, D Mehrdadi and Z Abedien Spectrochim. Acta A196 353 (2018) M Arivazhagan and S Jeyavijayan Spectrochim. Acta A79 376 (2011) R J Parr, L V Szentpaly and S Liu J. Am. Chem. Soc.121 1922 (1999) N Ozdemir, B Eren, M Dincer and V Bekdemir Mol. Phys.108 13 (2010) T Yanai, D Tew and N Handy Chem. Phys. Lett.393 51 (2004) J Wang, H Li, N N Ma, L K Yan and Z M Su Dyes Pigm.99 440 (2013) M I Abdullah, M R S A Janjua, A Mahmood, S Ali and M Ali Bull. Korean Chem. Soc.34 2093 (2013) P Pounraj, V Mohankumar, M S Pandian and P Ramasamy J. Mol. Graph. Model17 30649 (2017) J Zhang, Y H Kan, H B Li, Y Geng, Y Wu and Z M Su Dyes Pigm.95 313 (2012) P Politzer and D G Truhlar (Eds.) Chemical Applications of Atomic and Molecular Electrostatic Potentials (New York: Plenum Press) (1981) E Scrocco Tomasi J. Adv. Quantum Chem.11 115 (1978) P Politzer and K C Daiker Models for chemical reactivity. The Force Concept in Chemistry (eds.) B M Deb (Van Nostrand Reinhold: New York) p 294 (1981) V Balachandran and V Karunakaran J. Mol. Struct.106 284 (2013) E D Glendening, A E Reed, J E Carpenter and F Weinhold NBO Version 3.1, TCI (Madison: University of Wisconsin) (1998) S Sebastian and N Sundaraganesan Spectrochim. Acta A75 941 (2010) R G Parr and W Yang Functional Theory of Atoms and Molecules (New York: Oxford University Press) (1989) P W Ayers and R G Parr J. Am. Chem. Soc.122 2010 (2000)