Experimental and numerical study on thermal‐hydraulic performance of printed circuit heat exchanger for liquefied gas vaporization

Energy Science and Engineering - Tập 8 Số 2 - Trang 426-440 - 2020
Zhongchao Zhao1, Xu‐Dong Chen1, Zhang Xiao1, Xiaolong Ma1, Shan Yang1
1School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, China

Tóm tắt

AbstractThe thermal‐hydraulic performance of printed circuit heat exchanger (PCHE) through an experimental vaporization process of supercritical nitrogen was investigated. The inlet temperature of supercritical nitrogen was controlled between 113 K and 129 K, while its pressure was controlled between 4.5 MPa and 6 MPa. The mass of supercritical nitrogen corresponds to the turbulent state on the cold side of PCHE, which was maintained at 299.94 kg/h. A numerical processing of the same supercritical nitrogen flow through a single channel of PCHE cold side was presented. The numerical results were validated by comparison with the experimental data. Both experimental and numerical results showed that the increased inlet supercritical nitrogen pressure improved the heat transfer performance and pressure drop decreased with increasing the pressure at the PCHE cold side. Furthermore, the Fanning friction coefficient (f) and the Nusselt number (Nu) of supercritical nitrogen flow obtained by numerical simulation and empirical correlation were compared.

Từ khóa


Tài liệu tham khảo

10.1016/j.ijrefrig.2005.11.005

10.1016/j.expthermflusci.2006.03.010

10.1016/j.nucengdes.2008.08.002

10.1016/j.applthermaleng.2010.05.028

10.1080/00223131.2012.660012

10.1016/j.nucengdes.2009.07.005

10.1016/j.applthermaleng.2011.08.012

10.1016/j.expthermflusci.2013.03.003

10.1016/j.ijheatmasstransfer.2013.10.079

10.1016/j.nucengdes.2014.01.006

10.1016/j.applthermaleng.2014.05.040

10.1016/j.applthermaleng.2014.01.025

10.1016/j.ijheatmasstransfer.2016.06.091

10.1016/j.anucene.2016.01.019

10.1016/j.applthermaleng.2016.05.033

10.1016/j.applthermaleng.2015.12.046

10.1016/j.anucene.2016.02.031

10.1016/j.apenergy.2016.08.130

10.1016/j.apenergy.2016.07.119

Bowman RA, 1940, Mean temperature differences in design, Trans ASME, 62, 283

10.1002/9780470172605

10.1016/j.icheatmasstransfer.2008.10.012

10.1016/j.cryogenics.2011.04.005

10.1016/j.cryogenics.2014.01.003

Gnielinski V, 1976, New equations for heat and mass transfer in turbulent pipe and channel flow, Int Chem Eng, 16, 359

10.1016/j.applthermaleng.2017.07.193

10.6028/NIST.TN.1297

10.1016/S0017-9310(97)00177-4

10.1007/s00231-010-0727-y