Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface

Applied Thermal Engineering - Tập 137 - Trang 83-92 - 2018
Yina Yao1, Cong Li1, Zhenxiang Tao1, Rui Yang1, Hui Zhang1
1Department of Engineering Physics, Tsinghua University, Beijing, 100084, China

Tài liệu tham khảo

Cao, 2015, Aircraft flight characteristics in icing conditions, Prog. Aerosp. Sci., 74, 62, 10.1016/j.paerosci.2014.12.001 Jung, 2012, Mechanism of supercooled droplet freezing on surfaces, Nat. Commun., 3, 299, 10.1038/ncomms1630 Du, 2014, Durable superhydrophobic andsuperoleophilic filter paper for oil water separation prepared by a colloidaldeposition method, Appl. Surf. Sci., 313, 304, 10.1016/j.apsusc.2014.05.207 Zilio, 2014, Aircraft anti-ice system: Evaluation of system performance with a new time dependent mathematical model, Appl. Therm. Eng., 63, 40, 10.1016/j.applthermaleng.2013.10.048 Lian, 2017, Experimental investigation on a novel aero-engine nose cone anti-icing system, Appl. Therm. Eng., 121, 10.1016/j.applthermaleng.2017.04.160 Li, 2011, 451 Yang, 2011, Freezing mechanism of supercooled water droplet impinging on metal surfaces, Int. J. Refrig., 34, 2007, 10.1016/j.ijrefrig.2011.07.001 Xu, 2012, Characteristics of single droplet impact on cold plate surfaces, Drying Technol., 30, 1756, 10.1080/07373937.2012.708001 Jin, 2015, The impact, freezing, and melting processes of a water droplet on an inclined cold surface, Int. J. Heat Mass Transf., 90, 439, 10.1016/j.ijheatmasstransfer.2015.06.086 Jin, 2016, The impact and freezing processes of a water droplet on different inclined cold surfaces, Int. J. Heat Mass Transf., 97, 211, 10.1016/j.ijheatmasstransfer.2016.02.024 Meuler, 2010, Relationships between water wettability and ice adhesion, ACS Appl. Mater. Interf. Sci., 2, 3100, 10.1021/am1006035 Zou, 2011, Effects of surfaceroughness and energy on ice adhesion strength, Appl. Surf. Sci., 257, 3786, 10.1016/j.apsusc.2010.11.149 Tourkine, 2009, Delayed freezing on water repellent materials, Langmuir, 25, 7214, 10.1021/la900929u Hao, 2014, Freezing of sessile water droplets on surfaces with various roughness and wettability, Appl. Phys. Lett., 104, 117, 10.1063/1.4873345 Zheng, 2011, Exceptional superhydrophobicity and low velocity impact icephobicity of acetone-functionalized carbon nanotube films, Langmuir, 27, 9936, 10.1021/la201548k Mishchenko, 2010, Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets., Acs Nano, 4, 7699, 10.1021/nn102557p Jung, 2011, Are superhydrophobic surfaces best for icephobicity?, Langmuir Acs J. Surfaces Colloids, 27, 3059, 10.1021/la104762g Hao, 2014, Water droplet impact on superhydrophobic surfaces with microstructures and hierarchical roughness, Sci. China Phys. Mech. Astron., 57, 1376, 10.1007/s11433-014-5472-7 M. Remer, G. Sobieraj, K. Gumowski, J. Rokicki, M. Psarski, J. Marczak, G. Celichowski, Dynamic contact of droplet with superhydrophobic surface in conditions favour icing, J. Phys: Conf. Ser. 530 (2014) 012028. IOP Publishing. Feuillebois, 1995, Freezing of a subcooled liquid droplet, J. Colloid Interface Sci., 169, 90, 10.1006/jcis.1995.1010 Strub, 2003, Experimental study and modeling of the crystallization of a water droplet, Int. J. Refrig., 26, 59, 10.1016/S0140-7007(02)00021-X Singh, 2013, Delayed freezing of water droplet on silver nanocolumnar thin film, Appl. Phys. Lett., 102, 243112, 10.1063/1.4811751 Chaudhary, 2014, Freezing of water droplets on solid surfaces: an experimental and numerical study, Exp. Therm Fluid Sci., 57, 86, 10.1016/j.expthermflusci.2014.04.007 Zhao, 2016, An improved enthalpy-based lattice Boltzmann model for heat and mass transfer of the freezing process, Appl. Therm. Eng. Blake, 2015, Simulating the freezing of supercooled water droplets impacting a cooled substrate, AIAA Journal, 53, 1725, 10.2514/1.J053391 Yao, 2017, Modeling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces, Appl. Surf. Sci., 10.1016/j.apsusc.2017.04.085 Zhang, 2017, Modelling of sessile water droplet shape evolution during freezing with consideration of supercooling effect, Appl. Therm. Eng., 125, 644, 10.1016/j.applthermaleng.2017.07.017 Zhang, 2017, Freezing and melting of a sessile water droplet on a horizontal cold plate, Exp. Therm Fluid Sci., 88, 1, 10.1016/j.expthermflusci.2017.05.009 Myers, 1998, Modeling the flow of water on aircraft in icing conditions, AIAA Journal, 36, 1010, 10.2514/2.472 Blake J D. Simulation of the impact and solidification of supercooled water droplets. Dissertations & Theses – Gradworks, 2013. Kawanami, 1997, Solidification characteristics of a droplet on a horizontal cooled wall, Heat Transf. – Jpn. Res., 26, 469, 10.1002/(SICI)1520-6556(1997)26:7<469::AID-HTJ5>3.0.CO;2-U Moon, 2014, Spreading and receding characteristics of a non-Newtonian droplet impinging on a heated surface, Exp. Therm Fluid Sci., 57, 94, 10.1016/j.expthermflusci.2014.04.003 Roisman, 2002, Normal impact of a liquid drop on a dry surface: model for spreading and receding, Proc. R. Soc. Lond. A., 458, 1411, 10.1098/rspa.2001.0923 Bartolo, 2005, Retraction dynamics of aqueous drops upon impact on non-wetting surfaces, J. Fluid Mech., 545, 329, 10.1017/S0022112005007184 Lim, 2009, Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate, Int. J. Heat Mass Transf., 52, 431, 10.1016/j.ijheatmasstransfer.2008.05.028 Marín, 2014, Universality of tip singularity formation in freezing water drops, Phys. Rev. Lett., 113, 054301, 10.1103/PhysRevLett.113.054301 Hindmarsh, 2003, Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet, Int. J. Heat Mass Transf., 46, 1199, 10.1016/S0017-9310(02)00399-X Enríquez, 2012, Freezing singularities in water drops, Phys. Fluids, 24, 91102, 10.1063/1.4747185 Marín, 2014, Universality of tip singularity formation in freezing water drops, Phys. Rev. Lett., 113, 54301, 10.1103/PhysRevLett.113.054301 Zhang, 2004, Numerical simulation of nucleation, solidification, and microstructure formation in thermal spraying, Int. J. Heat Mass Transf., 47, 2191, 10.1016/j.ijheatmasstransfer.2003.11.030 Fletcher, 1958, Size Effect in Heterogeneous Nucleation, J. Chem. Phys., 29, 572, 10.1063/1.1744540 Sadhal, 1977, Heat transfer through drop condensate using differential inequalities, Int. J. Heat Mass Transf., 20, 1401, 10.1016/0017-9310(77)90037-0 Mills, 1999, 167 Brackbill, 1992, A continuum method for modelingsurface tension, J. Comput. Phys., 100, 335, 10.1016/0021-9991(92)90240-Y