Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface
Tài liệu tham khảo
Cao, 2015, Aircraft flight characteristics in icing conditions, Prog. Aerosp. Sci., 74, 62, 10.1016/j.paerosci.2014.12.001
Jung, 2012, Mechanism of supercooled droplet freezing on surfaces, Nat. Commun., 3, 299, 10.1038/ncomms1630
Du, 2014, Durable superhydrophobic andsuperoleophilic filter paper for oil water separation prepared by a colloidaldeposition method, Appl. Surf. Sci., 313, 304, 10.1016/j.apsusc.2014.05.207
Zilio, 2014, Aircraft anti-ice system: Evaluation of system performance with a new time dependent mathematical model, Appl. Therm. Eng., 63, 40, 10.1016/j.applthermaleng.2013.10.048
Lian, 2017, Experimental investigation on a novel aero-engine nose cone anti-icing system, Appl. Therm. Eng., 121, 10.1016/j.applthermaleng.2017.04.160
Li, 2011, 451
Yang, 2011, Freezing mechanism of supercooled water droplet impinging on metal surfaces, Int. J. Refrig., 34, 2007, 10.1016/j.ijrefrig.2011.07.001
Xu, 2012, Characteristics of single droplet impact on cold plate surfaces, Drying Technol., 30, 1756, 10.1080/07373937.2012.708001
Jin, 2015, The impact, freezing, and melting processes of a water droplet on an inclined cold surface, Int. J. Heat Mass Transf., 90, 439, 10.1016/j.ijheatmasstransfer.2015.06.086
Jin, 2016, The impact and freezing processes of a water droplet on different inclined cold surfaces, Int. J. Heat Mass Transf., 97, 211, 10.1016/j.ijheatmasstransfer.2016.02.024
Meuler, 2010, Relationships between water wettability and ice adhesion, ACS Appl. Mater. Interf. Sci., 2, 3100, 10.1021/am1006035
Zou, 2011, Effects of surfaceroughness and energy on ice adhesion strength, Appl. Surf. Sci., 257, 3786, 10.1016/j.apsusc.2010.11.149
Tourkine, 2009, Delayed freezing on water repellent materials, Langmuir, 25, 7214, 10.1021/la900929u
Hao, 2014, Freezing of sessile water droplets on surfaces with various roughness and wettability, Appl. Phys. Lett., 104, 117, 10.1063/1.4873345
Zheng, 2011, Exceptional superhydrophobicity and low velocity impact icephobicity of acetone-functionalized carbon nanotube films, Langmuir, 27, 9936, 10.1021/la201548k
Mishchenko, 2010, Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets., Acs Nano, 4, 7699, 10.1021/nn102557p
Jung, 2011, Are superhydrophobic surfaces best for icephobicity?, Langmuir Acs J. Surfaces Colloids, 27, 3059, 10.1021/la104762g
Hao, 2014, Water droplet impact on superhydrophobic surfaces with microstructures and hierarchical roughness, Sci. China Phys. Mech. Astron., 57, 1376, 10.1007/s11433-014-5472-7
M. Remer, G. Sobieraj, K. Gumowski, J. Rokicki, M. Psarski, J. Marczak, G. Celichowski, Dynamic contact of droplet with superhydrophobic surface in conditions favour icing, J. Phys: Conf. Ser. 530 (2014) 012028. IOP Publishing.
Feuillebois, 1995, Freezing of a subcooled liquid droplet, J. Colloid Interface Sci., 169, 90, 10.1006/jcis.1995.1010
Strub, 2003, Experimental study and modeling of the crystallization of a water droplet, Int. J. Refrig., 26, 59, 10.1016/S0140-7007(02)00021-X
Singh, 2013, Delayed freezing of water droplet on silver nanocolumnar thin film, Appl. Phys. Lett., 102, 243112, 10.1063/1.4811751
Chaudhary, 2014, Freezing of water droplets on solid surfaces: an experimental and numerical study, Exp. Therm Fluid Sci., 57, 86, 10.1016/j.expthermflusci.2014.04.007
Zhao, 2016, An improved enthalpy-based lattice Boltzmann model for heat and mass transfer of the freezing process, Appl. Therm. Eng.
Blake, 2015, Simulating the freezing of supercooled water droplets impacting a cooled substrate, AIAA Journal, 53, 1725, 10.2514/1.J053391
Yao, 2017, Modeling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces, Appl. Surf. Sci., 10.1016/j.apsusc.2017.04.085
Zhang, 2017, Modelling of sessile water droplet shape evolution during freezing with consideration of supercooling effect, Appl. Therm. Eng., 125, 644, 10.1016/j.applthermaleng.2017.07.017
Zhang, 2017, Freezing and melting of a sessile water droplet on a horizontal cold plate, Exp. Therm Fluid Sci., 88, 1, 10.1016/j.expthermflusci.2017.05.009
Myers, 1998, Modeling the flow of water on aircraft in icing conditions, AIAA Journal, 36, 1010, 10.2514/2.472
Blake J D. Simulation of the impact and solidification of supercooled water droplets. Dissertations & Theses – Gradworks, 2013.
Kawanami, 1997, Solidification characteristics of a droplet on a horizontal cooled wall, Heat Transf. – Jpn. Res., 26, 469, 10.1002/(SICI)1520-6556(1997)26:7<469::AID-HTJ5>3.0.CO;2-U
Moon, 2014, Spreading and receding characteristics of a non-Newtonian droplet impinging on a heated surface, Exp. Therm Fluid Sci., 57, 94, 10.1016/j.expthermflusci.2014.04.003
Roisman, 2002, Normal impact of a liquid drop on a dry surface: model for spreading and receding, Proc. R. Soc. Lond. A., 458, 1411, 10.1098/rspa.2001.0923
Bartolo, 2005, Retraction dynamics of aqueous drops upon impact on non-wetting surfaces, J. Fluid Mech., 545, 329, 10.1017/S0022112005007184
Lim, 2009, Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate, Int. J. Heat Mass Transf., 52, 431, 10.1016/j.ijheatmasstransfer.2008.05.028
Marín, 2014, Universality of tip singularity formation in freezing water drops, Phys. Rev. Lett., 113, 054301, 10.1103/PhysRevLett.113.054301
Hindmarsh, 2003, Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet, Int. J. Heat Mass Transf., 46, 1199, 10.1016/S0017-9310(02)00399-X
Enríquez, 2012, Freezing singularities in water drops, Phys. Fluids, 24, 91102, 10.1063/1.4747185
Marín, 2014, Universality of tip singularity formation in freezing water drops, Phys. Rev. Lett., 113, 54301, 10.1103/PhysRevLett.113.054301
Zhang, 2004, Numerical simulation of nucleation, solidification, and microstructure formation in thermal spraying, Int. J. Heat Mass Transf., 47, 2191, 10.1016/j.ijheatmasstransfer.2003.11.030
Fletcher, 1958, Size Effect in Heterogeneous Nucleation, J. Chem. Phys., 29, 572, 10.1063/1.1744540
Sadhal, 1977, Heat transfer through drop condensate using differential inequalities, Int. J. Heat Mass Transf., 20, 1401, 10.1016/0017-9310(77)90037-0
Mills, 1999, 167
Brackbill, 1992, A continuum method for modelingsurface tension, J. Comput. Phys., 100, 335, 10.1016/0021-9991(92)90240-Y