Experimental and numerical investigation of the flow in a cylindrical cavity with an unsteady rotating lid

Acta Mechanica - Tập 233 - Trang 1107-1124 - 2022
J. S. David1, A. Vernet1, F. X. Grau1, J. Pallares1
1Departament d'Enginyeria Mecànica, Universitat Rovira i Virgili, Tarragona, Spain

Tóm tắt

In this paper, we analyse the flow in a cylindrical cavity of aspect ratio H/R = 2, with a top lid rotating with a sinusoidal time-varying speed. The Reynolds numbers, based on the time-averaged rotating speed and the radius of the cavity (Re = $$ \Omega _0 R^2/\nu $$ ) are 2800, 3500 and 4100. Particle Image velocimetry measurements and numerical simulations are performed to determine the effect on the flow of different imposed frequencies on the rotating lid. The acceleration and deceleration of the lid produce a marked pulsatile flow behaviour. It is found that at low Reynolds numbers the frequencies measured in the flow coincide with the frequency imposed on the rotating lid, while at the largest Re considered the flow frequencies are significantly lower, especially when the frequency of the disk is large. The fluctuations induced in the vertical velocity component are about 100% of the instantaneous values while for the angular component the fluctuations are of the same order as the instantaneous values.

Tài liệu tham khảo

Childs, P.R.N.: Rotating Flow. Elsevier Science, Butterworth-Heinemann, Netherlands (2010) Escudier, M.P.: Observations of the flow produced in a cylindrical container by a rotating end wall. Exp. Fluids 2(4), 189–196 (1984) Lopez, J.M., Perry, A.D.: Axisymmetric vortex breakdown: part 3 onset of periodic flow and chaotic advection. J. Fluid Mech. 234, 449–471 (1992) Westergaard, C.H., Buchhave, P., Sørensen, J.N.: PIV Measurements of Turbulent and Chaotic Structures in a Rotating Flow Using an Optical Correlator. Technical University of Denmark, Lyngby (1992) Sørensen, J.N., Naumov, I., Mikkelsen, R.: Experimental investigation of three-dimensional flow instabilities in a rotating lid-driven cavity. Exp. Fluids 41(3), 425–440 (2006) Gelfgat, Y., Bar-yoseph, P.Z.: Three-dimensional instability of axisymmetric flow in a rotating lid-cylinder enclosure. J. Fluid Mech. 438, 363–377 (2001) Vogel, H.U.: Experimentelle Ergebnisse Ueber Die Laminare Stroemung in Einem Zylindrischen Gehaeuse Mit Darin Rotierender Sceibe, p. 6. Max-Plank-Institute fuer Stroemungsforschung, Goettingen, Bericht (1968) Ronnenberg, B.: Ein Selbstjustierendes 3-Komponenten-Laserdoppleranemometer Nach Dem Vergleichsstrahlverfahren: Angewandt Für Untersuchungen in Einer Stationären Zylindersymmetrischen Drehströmung Mit Einem Rückstromgebiet, na(1977) Spohn, A., Mory, M., Hopfinger, E.J.: Experiments on vortex breakdown in a confined flow generated by a rotating disc. J. Fluid Mech. 370, 73–99 (1998) Sotiropoulos, F., Ventikos, Y.: The three-dimensional structure of confined swirling flows with vortex breakdown. J. Fluid Mech. 426, 155–175 (2001) Sotiropoulos, F., Ventikos, Y.: Transition from bubble-type vortex breakdown to columnar vortex in a confined swirling flow. Intl J. Heat Fluid Flow 19, 446–458 (1998) Sotiropoulos, F., Webster, D.R., Lackey, T.C.: Experiments on Lagrangian transport in steady vortex-breakdown bubbles in a confined swirling flow. J. Fluid Mech. 466, 215–248 (2002) Aref, H.: Stirring by chaotic advection. J. Fluid Mech. 143, 1–21 (1984) Aref, H.: Order in chaos. Nature 401, 756–757 (1999) Sotiropoulos, F., Ventikos, Y., Lackey, T.C.: Chaotic advection in three-dimensional stationary vortex-breakdown bubbles: Šil’nikov’s Chaos and the Devil’s Staircase. J. Fluid Mech. 444, 257–297 (2001) Romanò, F., Hajisharifi, A., Kuhlmann, H.: Cellular flow in a partially filled rotating drum: regular and chaotic advection. J. Fluid Mech. 825, 631–650 (2017). https://doi.org/10.1017/jfm.2017.393 Kuhlmann H.C., Romanò, F.: The Lid-Driven Cavity. In: Gelfgat A. (eds) Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics. Computational Methods in Applied Sciences, https://doi.org/10.1007/978-3-319-91494-7_8(2019) Romanò, F., Albensoeder, S., Kuhlmann, H.C.: Topology of three-dimensional steady cellular flow in a two-sided anti-parallel lid-driven cavity. J. Fluid Mech. 826, 302–334 (2017) Romanò, F., Türkbay, T., Kuhlmann, H.C.: Lagrangian chaos in steady three-dimensional lid-driven cavity flow. Chaos Interdiscip. J. Nonlinear Sci. 30(7), 073121 (2020) Kusch, H., Ottino, J.: Experiments on mixing in continuous chaotic flows. J. Fluid Mech. 236, 319–348 (1992). https://doi.org/10.1017/S0022112092001435 Leong, C., Ottino, J.: Experiments on mixing due to chaotic advection in a cavity. J. Fluid Mech. 209, 463–499 (1989). https://doi.org/10.1017/S0022112089003186 Gollub, J.P., Swinney, H.L.: Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35(14), 927–930 (1975) Daube, O., Sørensen, J. N.: “Simulation Numérique de l’écoulement Périodique Axisymétrique Dans Une Cavité Cylindrique. (Numerical simulation of the axisymmetric periodic flow in a cylindrical tank).,” C. R. Acad. Sci., Paris, Sér. II, 308(5), pp. 463–469(1989) Daube, O., Sørensen, J.N.: Numerical simulation of the axisymmetric periodic flow in a cylindrical cavity. J. Fluid Mech. 28(4), 323–346 (1989) Lopez, J.M.: Axisymmetric vortex breakdown part 1: confined swirling flow. J. Fluid Mech. 221, 533–552 (1990) Lopez, J.M., Marques, F., Shen, J.: An efficient spectral-projection method for the Navier-Stokes equations in cylindrical geometries. J. Comput. Phys. 176(2), 384–401 (2002) Blackburn, H.M., Lopez, J.M.: Modulated rotating waves in an enclosed swirling flow. J. Fluid Mech. 465, 33–58 (2002) Stevens, J.L., Lopez, J.M., Cantwell, B.J.: Oscillatory flow states in an enclosed cylinder with a rotating endwall. J. Fluid Mech. 389, 101–118 (1999) Marques, F., Lopez, J.M.: Precessing vortex breakdown mode in an enclosed cylinder flow. Phys. Fluids 13(6), 1679–1682 (2001) Brown, G.L., Lopez, J.M.: Axisymmetric vortex breakdown part 2: physical mechanisms. J. Fluid Mech. 221, 553–576 (1990) Lopez, J.M.: Three-dimensional swirling flows in a tall cylinder driven by a rotating endwall. J. Fluid Mech. 24(1), 014101 (2012) Lopez, J., Perry, A.: Axisymmetric vortex breakdown: Part 3 Onset of periodic flow and chaotic advection. J. Fluid Mech. 234, 449–471 (1992). https://doi.org/10.1017/S0022112092000867 Mullin, T.: The Nature of Chaos. Oxford University Press, USA (1993) Mullin., T.: A Multiple Bifurcation Point as an Organizing Centre For Chaos. The Nature of Chaos, (Oxford University Press, USA).”(1993) Braunsfurth, M.G., Mullin, T.: An experimental study of oscillatory convection in liquid gallium. J. Fluid Mech. 327, 199–219 (1996) Kobine, J.J., Mullin, T.: Low-dimensional bifurcation phenomena in Taylor-Couette flow with discrete azimuthal symmetry. J. Fluid Mech. 275, 379–405 (1994) Cliffe, K.A., Kobine, J.J., Mullin, T.: The role of anomalous modes in Taylor-couette flow. Proc. R Soc. London A Math. Phys. Eng. Sci. 439(1906), 341–357 (1992) Sørensen, J.N., Christensen, E.A.: Direct numerical simulation of rotating fluid flow in a closed cylinder. Phys. Fluids 7(4), 764–778 (1995) Brøns, M., Voigt, L.K., Sørensen, J.N.: Streamline topology of steady axisymmetric vortex breakdown in a cylinder with co- and counter-rotating end-covers. J. Fluid Mech. 401(1999), 275–292 (1999) Watson, J.P., Neitzel, G.P.: Numerical evaluation of a vortex-breakdown criterion. Phys. Fluids 8(11), 3063–3071 (1996) Peres, N., Poncet, S., Serre, E.: A 3D pseudospectral method for cylindrical coordinates: application to the simulations of rotating cavity flows. J. Comput. Phys. 231(19), 6290–6305 (2012) Serre, E., Bontoux, P.: Three-dimensional swirling flow with a precessing vortex breakdown in a rotor-stator cylinder. Phys. Fluids 13(11), 3500–3503 (2001) Brøns, M., Shen, W.Z., Sørensen, J.N., Zhu, W.J.: The influence of imperfections on the flow structure of steady vortex breakdown bubbles. J. Fluid Mech. 578, 453–466 (2007) Sancho, I., Varela, S., Vernet, A., Pallares, J.: Characterization of the reacting laminar flow in a cylindrical cavity with a rotating endwall using numerical simulations and a combined PIV/PLIF technique. Int. J. Heat and Mass Transf. 93, 155–166 (2016)