Experimental and numerical analyses of nitrogen oxides formation in a high ammonia-low hydrogen blend using a tangential swirl burner
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chiuta S, et al. (2013) “Reactor technology options for distributed hydrogen generation via ammonia decomposition: A review,” International Journal of Hydrogen Energy, pp. 14968–14991. https://doi.org/10.1016/j.ijhydene.2013.09.067.
Zamfirescu C, Dincer I (2009) Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Process Technol 90(5):729–737. https://doi.org/10.1016/j.fuproc.2009.02.004
Dimitriou P, Javaid R (2020) A review of ammonia as a compression ignition engine fuel. International Journal of Hydrogen Energy. Elsevier Ltd, pp. 7098–7118. https://doi.org/10.1016/j.ijhydene.2019.12.209.
Kobayashi H et al (2019) Science and technology of ammonia combustion. Proc Combust Inst 37(1):109–133. https://doi.org/10.1016/j.proci.2018.09.029
Valera-Medina A et al (2018) “Ammonia for power,” Progress in Energy and Combustion Science. Elsevier Ltd, pp. 63–102. https://doi.org/10.1016/j.pecs.2018.07.001.
Mørch CS et al (2011) Ammonia/hydrogen mixtures in an SI-engine: Engine performance and analysis of a proposed fuel system. Fuel 90(2):854–864. https://doi.org/10.1016/j.fuel.2010.09.042
Reiter AJ, Kong SC (2011) Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel 90(1):87–97. https://doi.org/10.1016/j.fuel.2010.07.055
Chai, W.S. et al. (2021) “A review on ammonia, ammonia-hydrogen and ammonia-methane fuels,” Renewable and Sustainable Energy Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.111254.
Crutzen PJ, Brauch HG (2016) Springer briefs on pioneers in science and practice nobel laureates A Pioneer on Atmospheric Chemistry and Climate Change in the Anthropocene. Available at: http://www.afes-press-books.de/html/SpringerBriefs_PSP.htm.
de Diego LF et al (1996) Influence of operating parameters on NOx and N20 axial profiles in a circulating fluidized bed combustor, Fuel.
Hill SC, Smoot LD (2000) Modeling of nitrogen oxides formation and destruction in combustion systems. Available at: www.elsevier.com/locate/pecs.
Miller JA, Bowman CT (1989) Mechanism and modeling of nitrogen chemistry in combustion. Prog Energy Combust Sci 15(4):287–338. https://doi.org/10.1016/0360-1285(89)90017-8
Bowman CT (1992) Invited lecture control of combustion-generated nitrogen oxide emissions: Technology driven by regulation.
Glarborg P, Jensen AD, Johnsson JE (2003) Fuel nitrogen conversion in solid fuel fired systems. Progress in Energy and Combustion Science. Elsevier Ltd, pp. 89–113. https://doi.org/10.1016/S0360-1285(02)00031-X.
Glarborg, P. (2007) “Hidden interactions-Trace species governing combustion and emissions,” Proceedings of the Combustion Institute, 31 I(1), pp. 77–98. https://doi.org/10.1016/j.proci.2006.08.119.
Mathieu O, Petersen EL (2015) Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry. Combust Flame 162(3):554–570. https://doi.org/10.1016/j.combustflame.2014.08.022
Mei B et al (2019) Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions. Combust Flame 210:236–246. https://doi.org/10.1016/j.combustflame.2019.08.033
Song Y et al (2016) Ammonia oxidation at high pressure and intermediate temperatures. Fuel 181:358–365. https://doi.org/10.1016/j.fuel.2016.04.100
Shrestha KP et al (2018) Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides. Energy Fuels 32(10):10202–10217. https://doi.org/10.1021/acs.energyfuels.8b01056
Hayakawa A et al (2015) Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures. Fuel 159:98–106. https://doi.org/10.1016/j.fuel.2015.06.070
Glarborg, P. et al. (2018) “Modeling nitrogen chemistry in combustion,” Progress in Energy and Combustion Science. Elsevier Ltd, pp. 31–68. https://doi.org/10.1016/j.pecs.2018.01.002.
R Li et al 2019 Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures Fuel 257 https://doi.org/10.1016/j.fuel.2019.116059
Klippenstein SJ et al (2018) Theory and modeling of relevance to prompt-NO formation at high pressure. Combust Flame 195:3–17. https://doi.org/10.1016/j.combustflame.2018.04.029
Hayakawa A et al (2021) Experimental and numerical study of product gas characteristics of ammonia/air premixed laminar flames stabilized in a stagnation flow. Proc Combust Inst 38(2):2409–2417. https://doi.org/10.1016/j.proci.2020.07.030
Gaydon AG (1974) The Spectroscopy of Flames. Springer, Netherlands, Dordrecht. https://doi.org/10.1007/978-94-009-5720-6
Schott GL, Blair LS, Morgan JD (1973) Physical Chemistry Exploratory Shock-Wave Study of Thermal Nitrogen Trifluoride Decomposition and Reactions of Nitrogen Trifluoride and Dinitrogen Tetrafluoride with Hydrogen1ab. Available at: https://pubs.acs.org/sharingguidelines.
Roose TR, Hanson RK, Kruger CH (1981) A shock tube study of the decomposition of no in the presence of NH 3.
Yi Y et al (2017) Plasma-Triggered CH4/NH3 Coupling Reaction for Direct Synthesis of Liquid Nitrogen-Containing Organic Chemicals. ACS Omega 2(12):9199–9210. https://doi.org/10.1021/acsomega.7b01060
Ohashi, K. et al. (1989) Alignment Dependence of the NH, Chemiluminescence in the Reaction of Ar('P) Atoms with the Aligned NH, Molecules, J. Phys. Chem.
Mashruk S (2020) Nitric oxide formation analysis using chemical reactor modelling and laser induced fluorescence measurements on industrial swirl flames.
Shaddix CR (2017) A new method to compute the proper radiant heat transfer correction of bare-wire thermocouple measurements.
Kee RJ, Rupley FM, Miller J.A. (1989) Chemkin-II: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics.
Mashruk S, Xiao H, Valera-Medina A (2021) Rich-Quench-Lean model comparison for the clean use of humidified ammonia/hydrogen combustion systems. Int J Hydrogen Energy 46(5):4472–4484. https://doi.org/10.1016/j.ijhydene.2020.10.204
Mashruk S et al. (2021) Numerical Analysis on the Evolution of NH2 in Ammonia/hydrogen Swirling Flames and Detailed Sensitivity Analysis under Elevated Conditions,. Combustion Science and Technology [Preprint]. https://doi.org/10.1080/00102202.2021.1990897.
M Guteša Božo et al (2021) Humidified ammonia/hydrogen RQL combustion in a trigeneration gas turbine cycle Energy Convers Manage 227 https://doi.org/10.1016/j.enconman.2020.113625
Vigueras-Zuniga MO et al. (2020) Numerical predictions of a swirl combustor using complex chemistry fueled with ammonia/hydrogen blends. Energies, 13(2). https://doi.org/10.3390/en13020288.
Valera-Medina A, Syred N, Bowen P (2013) Central recirculation zone visualization in confined swirl combustors for terrestrial energy. J Propul Power 29(1):195–204. https://doi.org/10.2514/1.B34600
A Bertolino et al (2021) An evolutionary, data-driven approach for mechanism optimization: theory and application to ammonia combustion Combust Flame 229 https://doi.org/10.1016/j.combustflame.2021.02.012
Mei B et al (2021) Characterizing ammonia and nitric oxide interaction with outwardly propagating spherical flame method. Proc Combust Inst 38(2):2477–2485. https://doi.org/10.1016/j.proci.2020.07.133
Han X, Lavadera L, Konnov AA (2021) An experimental and kinetic modeling study on the laminar burning velocity of NH3+N2O+air flames. Combust Flame 228:13–28. https://doi.org/10.1016/j.combustflame.2021.01.027
X Zhang et al 2021 Combustion chemistry of ammonia/hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling Combust Flame 234https://doi.org/10.1016/j.combustflame.2021.111653
Stagni A et al (2020) An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia. Reaction Chemistry and Engineering 5(4):696–711. https://doi.org/10.1039/c9re00429g
Han X et al (2019) Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames. Combust Flame 206:214–226. https://doi.org/10.1016/J.COMBUSTFLAME.2019.05.003
S Persis de et al. (2020) NO formation in high pressure premixed flames: Experimental results and validation of a new revised reaction mechanism Fuel 260 https://doi.org/10.1016/j.fuel.2019.116331
Han X et al (2021) Experimental and kinetic modeling study of NO formation in premixed CH4+O2+N2 flames. Combust Flame 223:349–360. https://doi.org/10.1016/j.combustflame.2020.10.010
Capriolo G et al (2021) An experimental and kinetic modeling study on nitric oxide formation in premixed C3 alcohols flames. Proc Combust Inst 38(1):805–812. https://doi.org/10.1016/J.PROCI.2020.07.051
Burcat A, Ruscic B (2005) Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables. Available at: www.anl.gov.
Li Y, Sarathy SM (2020) Probing hydrogen–nitrogen chemistry: A theoretical study of important reactions in NxHy, HCN and HNCO oxidation. Int J Hydrogen Energy 45(43):23624–23637. https://doi.org/10.1016/J.IJHYDENE.2020.06.083
Glarborg P et al (2021) On the rate constant for NH2+HO2and third-body collision efficiencies for NH2+H(+M) and NH2+NH2(+M). J Phys Chem A 125(7):1505–1516. https://doi.org/10.1021/acs.jpca.0c11011
Diévart P, Catoire L (2020) Contributions of Experimental Data Obtained in Concentrated Mixtures to Kinetic Studies: Application to Monomethylhydrazine Pyrolysis. J Phys Chem A 124(30):6214–6236. https://doi.org/10.1021/acs.jpca.0c03144
Kanno N, Kito T (2020) Theoretical study on the hydrogen abstraction reactions from hydrazine derivatives by H atom. Int J Chem Kinet 52(8):548–555. https://doi.org/10.1002/kin.21370
Nguyen TL, Stanton JF (2019) Ab initio thermal rate coefficients for H + NH 3 ⇌ H 2 + NH 2. Int J Chem Kinet 51(5):321–328. https://doi.org/10.1002/kin.21255
Chavarrio Cañas JE et al (2022) Probing the gas-phase oxidation of ammonia: Addressing uncertainties with theoretical calculations Combust Flame 235 https://doi.org/10.1016/j.combustflame.2021.111708
Chen X, Fuller ME, Goldsmith F (2018) Reaction Chemistry & Engineering Decomposition Kinetics for HONO and HNO 2. 1. Available at: http://rsc.li/reaction-engineering.
Klippenstein SJ et al (2009) Thermal decomposition of NH2OH and subsequent reactions: Ab initiotransition state theory and reflected shock tube experiments. J Phys Chem A 113(38):10241–10259. https://doi.org/10.1021/jp905454k
Varga T et al (2016) Development of a Joint Hydrogen and Syngas Combustion Mechanism Based on an Optimization Approach. Int J Chem Kinet 48(8):407–422. https://doi.org/10.1002/kin.21006
Lamoureux N et al (2016) Modeling of NO formation in low pressure premixed flames. Combust Flame 163:557–575. https://doi.org/10.1016/j.combustflame.2015.11.007
Cemal Benim, A. and Syed, K.J. (2015) Flashback mechanisms in lean premixed gas turbine combustion.