Nghiên cứu thực nghiệm và mô hình hóa hành vi tribological tạm thời của chất bôi trơn hai pha dưới các điều kiện tải phức tạp

Springer Science and Business Media LLC - Tập 10 - Trang 911-926 - 2021
Xiao Yang1, Lemeng Zhang1, Denis J. Politis2, Jie Zhang1, Mohammad M. Gharbi3, David Leyvraz4, Liliang Wang1
1Department of Mechanical Engineering, Imperial College London, London, UK
2Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
3Houghton Deutschland GmbH, Dortmund, Germany
4Novelis Switzerland SA, Novelis Innovation Center Sierre, Sierre, Switzerland

Tóm tắt

Hiện tượng tribological tạm thời và sự phân hủy chất bôi trơn sớm đã được quan sát rộng rãi trong quá trình định hình kim loại, dẫn đến ma sát quá mức tại các giao diện tiếp xúc. Trong nghiên cứu này, hành vi tribological tạm thời của một chất bôi trơn hai pha đã được nghiên cứu dưới các điều kiện tải phức tạp, với những biến đổi đột ngột về nhiệt độ giao diện, tải trọng tiếp xúc và tốc độ trượt, do đó mô tả các điều kiện giao diện nghiêm trọng quan sát được trong các ứng dụng định hình kim loại ấm/nóng. Bằng chứng thực nghiệm mạnh mẽ chỉ ra rằng sự phát triển của ma sát được quy cho các hiệu ứng giảm bớt về mặt vật lý và phân hủy hóa học. Do đó, một mô hình ma sát tương tác visco-mechanochemical đã được phát triển để dự đoán chính xác hành vi tribological tạm thời của chất bôi trơn hai pha dưới các điều kiện tải phức tạp. Mô hình ma sát mới thể hiện sự phù hợp gần gũi giữa kết quả mô hình hóa và kết quả thí nghiệm.

Từ khóa

#Tribology #chất bôi trơn hai pha #ma sát #điều kiện tải phức tạp #định hình kim loại

Tài liệu tham khảo

Zhang J, Ewen J P, Ueda M, Wong J S S, Spikes H A. Mechanochemistry of zinc dialkyldithiophosphate on steel surfaces under elastohydrodynamic lubrication conditions. ACS Appl Mater Interfaces 12(5): 6662–6676 (2020) Hu Y, Zheng Y, Politis D J, Masen M A, Cui J, Wang L. Development of an interactive friction model to predict aluminum transfer in a pin-on-disc sliding system. Tribol Int 130: 216–228 (2019) Ma G J, Wang L L, Gao H X, Zhang J, Reddyhoff T. The friction coefficient evolution of a TiN coated contact during sliding wear. Appl Surf Sci 345: 109–115 (2015) Yang X, Liu X C, Liu H L, Politis D J, Leyvraz D, Wang L L. Experimental and modelling study of friction evolution and lubricant breakdown behaviour under varying contact conditions in warm aluminium forming processes. Tribol Int 158: 106934 (2021) Karbasian H, Tekkaya A E. A review on hot stamping. J Mater Process Technol 210(15): 2103–2118 (2010) Wang Z, Dohda K, Haruyama Y. Effects of entraining velocity of lubricant and sliding velocity on friction behavior in stainless steel sheet rolling. Wear 260(3): 249–257 (2006) Pereira M P, Yan W Y, Rolfe B F. Sliding distance, contact pressure and wear in sheet metal stamping. Wear 268(11–12): 1275–1284 (2010) Bhushan B. Introduction to Tribology. UK: John Wiley & Sons, Ltd., 2013. Bay N, Olsson D D, Andreasen J L. Lubricant test methods for sheet metal forming. Tribol Int 41(9–10): 844–853 (2008) Hu Y, Wang L, Politis D J, Masen M A. Development of an interactive friction model for the prediction of lubricant breakdown behaviour during sliding wear. Tribol Int 110: 370–377 (2017) Noder J, George R, Butcher C, Worswick M J. Friction characterization and application to warm forming of a high strength 7000-series aluminum sheet. J Mater Process Technol 293: 117066 (2021) Cui S G, Zhu H T, Wan S H, Tran B, Wang L, Tieu K. Investigation of different inorganic chemical compounds as hot metal forming lubricant by pin-on-disc and hot rolling. Tribol Int 125: 110–120 (2018) Xia W Z, Zhao J W, Wu H, Zhao X M, Zhang X M, Xu J Z, Jiao S H, Wang X G, Zhou C L, Jiang Z Y. Effects of oil-in-water based nanolubricant containing TiO2 nanoparticles in hot rolling of 304 stainless steel. J Mater Process Technol 262: 149–156 (2018) Liu Y, Zhu B, Wang K, Li S Q, Zhang Y S. Friction behaviors of 6061 aluminum alloy sheets in hot stamping under dry and lubricated conditions based on hot strip drawing test. Tribol Int 151: 106504 (2020) Dong Y C, Zheng K L, Fernandez J, Fuentes G, Li X Y, Dong H S. Tribology and hot forming performance of self-lubricious NC/NiBN and NC/WC: C hybrid composite coatings for hot forming Die. J Mater Process Technol 252: 183–190 (2018) Yang X, Zhang Q L, Zheng Y, Liu X C, Politis D, Fakir O E, Wang L L. Investigation of the friction coefficient evolution and lubricant breakdown behaviour of AA7075 aluminium alloy forming processes at elevated temperatures. Int J Extrem Manuf 3(2): 025002 (2021) Huang H D, Tu J P, Gan L P, Li C Z. An investigation on tribological properties of graphite nanosheets as oil additive. Wear 261(2): 140–144 (2006) Holinski R. Lubrication mechanism of solid lubricants in oils. S L E Trans 18(4): 263–269 (1975) Bartz W J. Some investigations on the influence of particle size on the lubricating effectiveness of molybdenum disulfide. S L E Trans 15(3): 207–215 (1972) Wu H X, Khan A M, Johnson B, Sasikumar K, Chung Y W, Wang Q J. Formation and nature of carbon-containing tribofilms. ACS Appl Mater Interfaces 11(17): 16139–16146 (2019) Seymour B, Fu W X, Wright R A E, Luo H M, Qu J, Dai S, Zhao B. Improved lubricating performance by combining oil-soluble hairy silica nanoparticles and an ionic liquid as an additive for a synthetic base oil. ACS Appl Mater Interfaces 10(17): 15129–15139 (2018) Li X W, Zhang D K, Xu X W, Lee K R. Tailoring the nanostructure of graphene as an oil-based additive: Toward synergistic lubrication with an amorphous carbon film. ACS Appl Mater Interfaces 12(38): 43320–43330 (2020) Chouhan A, Kumari S, Sarkar T K, Rawat S S, Khatri O P. Graphene-based aqueous lubricants: Dispersion stability to the enhancement of tribological properties. ACS Appl Mater Interfaces 12(46): 51785–51796 (2020) Yousif A E, Nacy S M. Hydrodynamic behaviour of two-phase (liquid-solid) lubricants. Wear 66(2): 223–240 (1981) Feng N S, Hahn E J. Density and viscosity models for two-phase homogeneous hydrodynamic damper fluids. S L E Trans 29(3): 361–369 (1986) Alberts M, Kalaitzidou K, Melkote S. An investigation of graphite nanoplatelets as lubricant in grinding. Int J Mach Tools Manuf 49(12–13): 966–970 (2009) Vazirisereshk M R, Martini A, Strubbe D A, Baykara M Z. Solid lubrication with MoS2: A review. Lubricants 7(7): 57 (2019) Sliney H E. Solid lubricant materials for high temperatures— A review. Tribol Int 15(5): 303–315 (1982) Hol J, Meinders V T, de Rooij M B, van den Boogaard A H. Multi-scale friction modeling for sheet metal forming: The boundary lubrication regime. Tribol Int 81: 112–128 (2015) Hol J, Meinders V T, Geijselaers H J M, van den Boogaard A H. Multi-scale friction modeling for sheet metal forming: The mixed lubrication regime. Tribol Int 85: 10–25 (2015) Shisode M, Hazrati J, Mishra T, de Rooij M, van den Boogaard T. Mixed lubrication friction model including surface texture effects for sheet metal forming. J Mater Process Technol 291: 117035 (2021) Shisode M, Hazrati J, Mishra T, de Rooij M, Horn C T, van Beeck J, van den Boogaard T. Modeling boundary friction of coated sheets in sheet metal forming. Tribol Int 153: 106554 (2021) Yang X. Lubricant 4.0: Digitally enhanced lubricant development for metal forming applications. Ph.D. Thesis. London (UK): Imperial College London, 2021. Dohda K, Boher C, Rezai-Aria F, Mahayotsanun N. Tribology in metal forming at elevated temperatures. Friction 3(1): 1–27 (2015) Wang L, He Y, Zhou J, Duszczyk J. Modelling of plowing and shear friction coefficients during high-temperature ballon-disc tests. Tribol Int 42(1): 15–22 (2009) Seeton C J. Viscosity-temperature correlation for liquids. In Proceedings of the International Joint Tribology Conference, San Antonio, USA, 2006: 131–142. Liu X C, Yang X, Sun Y H, Politis D J, Mori K I, Wang L L. Characterization of thermomechanical boundary conditions of a martensitic steel for a FAST forming process. J Manuf Mater Process 4(2): 57 (2020) Begelinger A, Gee A W J D. Failure of thin film lubrication—A detailed study of the lubricant film breakdown mechanism. Wear 77(1): 57–63 (1982) Dowson D, Whomes T L. Paper 8: Side-leakage factors for a rigid cylinder lubricated by an isoviscous fluid. Proc Inst Mech Eng Conf Proc. London: SAGE Publications Sage, 1966: 165–176. Carey F A, Sundberg R J. Advanced Organic Chemistry— Part A: Structure and Mechanisms. Springer Science & Business Media, 2007. Connors K A. Chemical Kinetics: the Study of Reaction Rates in Solution. New York (USA): Wiley-VCH Verlag GmbH; 1990. Archard J F. Contact and rubbing of flat surfaces. J Appl Phys 24(8): 981–988 (1953) Korsunsky A M, McGurk M R, Bull S J, Page T F. On the hardness of coated systems. Surf Coat Technol 99(1–2): 171–183 (1998) Komvopoulos K. Sliding friction mechanisms of boundary-lubricated layered surfaces: Part II—theoretical analysis. Tribol Trans 34(2): 281–291 (1991)