Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu thực nghiệm và lý thuyết chức năng mật độ về một số oxit kim loại và các cụm nano có nguồn gốc: các hiệu ứng so sánh lên ferritin của người
Tóm tắt
Một cuộc điều tra toàn diện về tổng hợp xanh các hạt nano oxit kim loại (NPs) đã thu hút được sự chú ý lớn nhờ vào độ tin cậy, tính bền vững và các đặc điểm thân thiện với môi trường. Các phương pháp tổng hợp xanh đóng một vai trò quan trọng trong việc giảm thiểu các tác động bất lợi liên quan đến các cách tiếp cận truyền thống được sử dụng cho việc chuẩn bị nanostructure. Nghiên cứu này nhằm nghiên cứu tác động của việc hỗ trợ tổng hợp xanh bằng chiết xuất thực vật gừng đối với mức ferritin huyết thanh của bệnh nhân tiểu đường thiếu máu in vitro, tập trung cụ thể vào hạt nano α-Fe2O3 và ZnO. Sáu mươi tình nguyện viên tiểu đường có thiếu máu (35–50 tuổi) và ba mươi tình nguyện viên khỏe mạnh được tuyển dụng làm đối chứng. Việc đánh giá được thực hiện bằng cách sử dụng thử nghiệm VIDAS Ferritin (FER). Các phép đo quang phát quang (PL) đã được thực hiện để làm sáng tỏ các chuyển tiếp nội tại và ngoại tại của các NPs này, khẳng định sự hình thành thành công của oxit sắt dạng α. Các phép tính lý thuyết chức năng mật độ (DFT) đã được thực hiện ở mức lý thuyết B3LYP/6-311++G(d,2p) để điều tra tối ưu hóa hình học và bản đồ tiềm năng điện tử phân tử của các NPs. Hơn nữa, các phép tính TD-DFT được sử dụng để khám phá các orbital phân tử biên và các tham số hóa lý lượng tử khác nhau. Độ hấp dẫn liên kết và các loại tương tác của NPs ZnO và α-Fe2O3 với vị trí hoạt động của ferritin chuỗi H của người (PDB ID: 2FHA) đã được xác định với sự trợ giúp của docking phân tử. Kết quả tiết lộ cấu trúc tinh thể của ZnO và cấu trúc α của α-Fe2O3. Phân tích các orbital phân tử biên và giá trị moment lưỡng cực cho thấy rằng ZnO (moment lưỡng cực tổng (D) = 5.80 µ) có phản ứng hóa học, hoạt tính sinh học vượt trội và các tương tác phân tử mạnh mẽ hơn với nhiều lực so với α-Fe2O3 (D = 2.65 µ). Việc docking các NPs oxit kim loại với ferritin chuỗi H của người cung cấp bằng chứng về các tương tác liên kết hydro mạnh và liên kết kim loại-nhà tiếp nhận giữa các oxit kim loại và protein mục tiêu. Phát hiện này có thể có tác động lớn đến việc sử dụng NPs oxit kim loại-ferritin như một protein điều trị, tuy nhiên, cần phải nghiên cứu thêm về độc tính của chúng.
Từ khóa
Tài liệu tham khảo
Cañas-Carrell JE, Li S, Parra AM, Shrestha B. Metal oxide nanomaterials: health and environmental effects. In: Njuguna J, Pielichowski K, Zhu H, editors. Health and environmental safety of nanomaterials. Singapore: Woodhead Publishing; 2014. p. 200–21. https://doi.org/10.1533/9780857096678.3.200.
El Shafey AM. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: a review. Green Process Synth. 2020;9:304–39. https://doi.org/10.1515/gps-2020-0031.
Sengul AB, Asmatulu E. Toxicity of metal and metal oxide nanoparticles: a review. Environ Chem Lett. 2020;18:1659–83. https://doi.org/10.1007/s10311-020-01033-6.
Ahmad N, Ali S, Abbas M, Fazal H, Saqib S, Ali A, Ullah Z, Zaman S, Sawati L, Zada A, Sohail. Antimicrobial efficacy of Mentha piperata-derived biogenic zinc oxide nanoparticles against UTI-resistant pathogens. Sci Rep. 2023;13:14972. https://doi.org/10.1038/s41598-023-41502-w.
Saqib S, Faryad S, Afridi MI, Arshad B, Younas M, Naeem M, Zaman W, Ullah F, Nisar M, Ali S, Elgorban AM, Syed A, Elansary HO, Zin TK. Bimetallic assembled silver nanoparticles impregnated in Aspergillus fumigatus extract damage the bacterial membrane surface and release cellular contents. Coatings. 2022;12:1505. https://doi.org/10.3390/coatings12101505.
Sharif MS, Hameed H, Waheed A, Tariq M, Afreen A, Kamal A, Mahmoud EA, Elansary HO, Saqib S, Zaman W. Biofabrication of Fe3O4 nanoparticles from Spirogyra hyalina and Ajuga bracteosa and their antibacterial applications. Molecules. 2022;28:3403. https://doi.org/10.3390/molecules28083403.
Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C. 2014;44:278–84. https://doi.org/10.1016/j.msec.2014.08.031.
Naseem T, Durrani T. The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: a review. Environ Chem Ecotoxicol. 2021;3:59–75. https://doi.org/10.1016/j.enceco.2020.12.001.
Das BK, Verma SK, Das T, Panda PK, Parashar K, Suar M, Parashar SKS. Altered electrical properties with controlled copper doping in ZnO nanoparticles infers their cytotoxicity in macrophages by ROS induction and apoptosis. Chem Biol Interact. 2019;297:141–54. https://doi.org/10.1016/j.cbi.2018.11.004.
Kumari S, Kumari P, Panda PK, Pramanik N, Verma SK, Mallick MA. Molecular aspect of phytofabrication of gold nanoparticle from Andrographis peniculata photosystem II and their in vivo biological effect on embryonic zebrafish (Danio rerio). Environ Nanotechnol Monit Manag. 2019;11:100201. https://doi.org/10.1016/j.enmm.2018.100201.
Verma SK, Panda PK, Jha E, Suar M, Parashar SK. Altered physiochemical properties in industrially synthesized ZnO nanoparticles regulate oxidative stress; induce in vivo cytotoxicity in embryonic zebrafish by apoptosis. Sci Rep. 2017;7(1):1–16. https://doi.org/10.1038/s41598-017-14039-y.
Martinkova P, Brtnicky M, Kynicky J, Pohanka M. Iron oxide nanoparticles: innovative tool in cancer diagnosis and therapy. Adv Healthc Mater. 2018;7:1700932. https://doi.org/10.1002/adhm.201700932.
Üstün E, Önbaş SC, Çelik SK, Ayvaz MÇ, Şahin N. Green synthesis of iron oxide nanoparticles by using Ficus carica leaf extract and its antioxidant activity. Biointerface Res Appl Chem. 2022;12:2108–16. https://doi.org/10.33263/BRIAC122.21082116.
Feng Y, Kreslavski VD, Shmarev AN, Ivanov AA, Zharmukhamedov SK, Kosobryukhov A, Yu M, Allakhverdiev SI, Shabala S. Effects of iron oxide nanoparticles (Fe3O4) on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum) plants. Plants. 2022;11:1894. https://doi.org/10.3390/plants11141894.
Singh TA, Sharma A, Tejwan N, Ghosh N, Das J, Sil PC. A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv Colloid Interface Sci. 2021;295:102495. https://doi.org/10.1016/j.cis.2021.102495.
Ishak NAI, Kamarudin SK, Timmiati SN. Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview. Mater Res Express. 2019;6:112004. https://doi.org/10.1088/2053-1591/ab4458.
Liu Z, Shamsuzzoha M, Ada ET, Reichert WM, Nikles DE. Synthesis and activation of Pt nanoparticles with controlled size for fuel cell electrocatalysts. J Power Sources. 2007;164:472–80. https://doi.org/10.1016/j.jpowsour.2006.10.104.
Kummara S, Patil MB, Uriah T. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles—a comparative study. Biomed Pharmacother. 2016;84:10–21. https://doi.org/10.1016/j.biopha.2016.09.003.
Saqib S, Nazeer A, Ali M, et al. Catalytic potential of endophytes facilitates synthesis of biometallic zinc oxide nanoparticles for agricultural application. Biometals. 2022;35:967–85. https://doi.org/10.1007/s10534-022-00417-1.
Saqib S, Zaman W, Ayaz A, Habib S, Bahadur S, Hussain S, Muhammad S, Ullah F. Postharvest disease inhibition in fruit by synthesis and characterization of chitosan iron oxide nanoparticles. Biocatal Agric Biotechnol. 2020;28:101729. https://doi.org/10.1016/j.bcab.2020.101729.
Al-Garawi ZS, Taha AA, Abd AN, Tahir NT. Immobilization of urease onto nanochitosan enhanced the enzyme efficiency: biophysical studies and in vitro clinical application on nephropathy diabetic Iraqi patients. J Nanotechnol. 2022;2022:9. https://doi.org/10.1155/2022/8288585.
Kaur K, Sidhu AK. Green synthesis: an eco-friendly route for the synthesis of iron oxide nanoparticles. Front Nanotechnol. 2021;3:655062. https://doi.org/10.3389/fnano.2021.655062.
Sheel R, Kumari P, Kumar Panda P, Danish Jawed Ansari M, Patel P, Singh S, Kumari B, Sarkar B, Mallick MA, Verma SK. Molecular intrinsic proximal interaction infer oxidative stress and apoptosis modulated in vivo biocompatibility of P.niruri contrived antibacterial iron oxide nanoparticles with zebrafish. Environ Pollut. 2020;267:115482. https://doi.org/10.1016/j.envpol.2020.115482.
Verma SK, Jha E, Panda PK, Das JK, Thirumurugan A, Suar M, Parashar S. Molecular aspects of core-shell intrinsic defect induced enhanced antibacterial activity of ZnO nanocrystals. Nanomedicine. 2017. https://doi.org/10.2217/nnm-2017-0237.
Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev. 2015;44:5778–92. https://doi.org/10.1039/C4CS00363B.
Patil SP, Chaudhari RY, Nemade MS. Azadirachta indica leaves mediated green synthesis of metal oxide nanoparticles: a review. Talanta Open. 2022;5:100083. https://doi.org/10.1016/j.talo.2022.100083.
Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale. 2022;14:2534–71. https://doi.org/10.1039/D1NR08144F.
Abdallah AM, Zaki NG, El Kerdawy AM, Mahmoud WH, Mohamed GG. Coordination behavior of cocaine toward d-block metal ions: synthesis, spectral analysis, density functional theory (DFT) studies, and chemotherapeutic activity. J Mol Struct. 2023;1293:136301. https://doi.org/10.1016/j.molstruc.2023.136301.
Al-Garawi ZS, Abdallah AM, Sabah RS, Al-jibouri MN, Tbatbaei ZMA, Mohamed GG. Design, DFT and molecular doping studies of metal complexes as a neurotransmitter modulator of autism spectrum disease in preschool children. J Mol Struct. 2023;1290:135875. https://doi.org/10.1016/j.molstruc.2023.135875.
Abdallah AM, Gomha SM, Zaki MEA, Abolibda TZ, Khedera NA. A green synthesis, DFT calculations, and molecular docking study of some new indeno[2,1-b]quinoxalines containing thiazole moiety. J Mol Struct. 2023;1292:136044. https://doi.org/10.1016/j.molstruc.2023.136044.
Abdallah AM, Frag EY, Tamam RH, Mohamed GG. Gliclazide charge transfer complexes with some benzoquinone acceptors: synthesis, structural characterization, thermal analyses, DFT studies, evaluation of anticancer activity and utility for determination of gliclazide in pure and dosage forms. J Mol Struct. 2021;1234:130153. https://doi.org/10.1016/j.molstruc.2021.130153.
Alkafaas SS, Abdallah AM, Hussien AM, Bedair H, Abdo M, Ghosh S, ElKaffas SS, et al. A study on the effect of natural products against the transmission of B.1.1.529 Omicron. Virol J. 2023;20:191. https://doi.org/10.1186/s12985-023-02160-6.
Ramadanti NA, Erlina L, Paramita RI, Tedjo A, Fadillah F, Dwira S. Pharmacophore modeling, molecular docking, and ADMET approach for identification of anti-cancer agents targeting the C-Jun N-Terminal Kinase (JNK) protein. Eksakta. 2023;24:99–111. https://doi.org/10.24036/eksakta/vol24-iss01/391.
Brás NF, Fernandes PA, Ramos MJ. Docking and molecular dynamics studies on the stereoselectivity in the enzymatic synthesis of carbohydrates. Theor Chem Acc. 2009;122:283–96. https://doi.org/10.1007/s00214-009-0507-2.
Fan J, Fu A, Zhang L. Progress in molecular docking. Quant Biol. 2019;7:83–9. https://doi.org/10.1007/s40484-019-0172-y.
Villaseñor-Granados T, García S, Vazquez MA, Robles J. Molecular docking-based screening of newly designed coumarin derivatives with potential antifungal activity against lanosterol 14 α-demethylase. Theor Chem Acc. 2016;135:210. https://doi.org/10.1007/s00214-016-1965-y.
Liao C, Peach ML, Yao R, Nicklaus MC. Molecular docking and structure-based virtual screening. In: Lill MA, editor. In silico drug discovery and design. London: Future Medicine Ltd.; 2013. p. 6–20. https://doi.org/10.4155/ebo.13.181.
Hilo DH, Al-Garawi ZS, Ismail AH. Green synthesis Of Zno Nps from ginger extract and the potential scavenging activity. Egypt J Chem. 2023;66:111–7. https://doi.org/10.21608/EJCHEM.2022.150407.6514.
Hilo DH, Ismail AH, Al-Garawi ZS. Green synthesis of A-Fe2O3 from ginger extract enhanced the potential antioxidant activity against DPPH. Al-Mustansiriyah J Sci. 2022;33:64–71. https://doi.org/10.23851/mjs.v33i4.1208.
Sadiq H, Sher F, Sehar S, Lima EC, Zhang S, Iqbal HMN, Zafar F, Nuhanović M. Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. J Mol Liq. 2021;335:116567. https://doi.org/10.1016/j.molliq.2021.116567.
Farouk F, Abdelmageed M, Ansari MA, Azzazy HME. Synthesis of magnetic iron oxide nanoparticles using pulp and seed aqueous extract of Citrullus colocynth and evaluation of their antimicrobial activity. Biotechnol Lett. 2020;42:231–40. https://doi.org/10.1007/S10529-019-02762-7.
Erbe A, Nayak S, Chen Y-H, Niu F, Pander M, Tecklenburg S, Toparli C. How to probe structure, kinetics, and dynamics at complex interfaces in situ and operando by optical spectroscopy. In: Wandelt K, editor. Encyclopedia of interfacial chemistry. Massachusetts: Elsevier; 2018. p. 199–219. https://doi.org/10.1016/B978-0-12-409547-2.14061-2.
Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–52. https://doi.org/10.1063/1.464913.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, People JA. GAUSSIAN 03 (Revision A.9). Pittsburgh: Gaussian, Inc.; 2003.
Casida ME. In: Seminario JM, editor. Recent developments and applications of modern density functional theory. Amsterdam: Elsevier; 1996. p. 391–439.
Koopmans T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica. 1934;1:104–13. https://doi.org/10.1016/S0031-8914(34)90011-2.
VIDAS® Ferritin 30 411, bioMérieux SA, 2015. https://www.biomerieux-diagnostics.com/vidasr-ferritin.
GraphPad Prism version 9.0.1 for Mac, GraphPad Software, Boston, Massachusetts USA, 2021, www.graphpad.com.
Hempstead PD, Yewdall SJ, Fernie AR, Lawson DM, Artymiuk PJ, Rice DW, Ford GC, Harrison PM. Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. J Mol Biol. 1997;268:424–48. https://doi.org/10.1006/jmbi.1997.0970.
Ikeda Y, Watanabe H, Shiuchi T, Hamano H, Horinouchi Y, Imanishi M, Goda M, Zamami Y, Takechi K, Izawa-Ishizawa Y, Miyamoto L, Ishizawa K, Aihara K, Tsuchiya K, Tamaki T. Deletion of H-ferritin in macrophages alleviates obesity and diabetes induced by high-fat diet in mice. Diabetologia. 2020;63:1588–602. https://doi.org/10.1007/s00125-020-05153-0.
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61. https://doi.org/10.1002/jcc.21334.
BIOVIA, Dassault Systèmes. Discovery Studio Visualizer v21.1.0.20298. San Diego: Dassault Systèmes; 2021.
Sajjad M, Ullah I, Khan MI, Khan J, Khan MY, Qureshi MT. Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Phys. 2018;9:1301–9. https://doi.org/10.1016/j.rinp.2018.04.010.
Abdul-Ameer Aboud N, Alkayat WMS, Hussain DH, Rheima AM. A comparative study of ZnO, CuO and a binary mixture of ZnO0.5-CuO0.5 with nano-dye on the efficiency of the dye-sensitized solar cell. J Phys Conf Ser. 2020;1664:012094. https://doi.org/10.1088/1742-6596/1664/1/012094.
Dash P, Raut S, Jena M, Nayak B. Harnessing the biomedical properties of ferromagnetic α-Fe2O3 NPs with a plausible formation mechanism. Ceram Int. 2020;46:26190–204. https://doi.org/10.1016/j.ceramint.2020.07.117.
Maharramov AM, Alieva IN, Abbasova GD, Ramazanov MA, Nabiyev NS, Saboktakin MR. Iron oxide nanoparticles in drug delivery systems. Dig J Nanomater Biostruct. 2011;6:419–31.
Abushad M, Hassan Z, Naseem S, Husain S, Khan W. A comparative study of ZnO nanostructures synthesized via sol–gel and hydrothermal processes. AIP Conf Proc. 2020;2265:030133. https://doi.org/10.1063/5.0017057.
Abdallah AM, Zaki NG, Mahmoud WH, El Kerdawy AM, Mohamed GG. Synthesis, structural characterization, density functional theory calculations, and antimicrobial, anticancer, and antimetastatic properties of nanosized heteroleptic complexes of cocaine/TMEDA with d-block metal ions. Appl Organomet Chem. 2021;35:e6441. https://doi.org/10.1002/aoc.6441.
Al-Qaisi ZHJ, Al-Garawi ZS, Al-Karawi AJM, Hammood AJ, Abdallah AM, Clegg W, Mohamed GG. Antiureolytic activity of new water-soluble thiadiazole derivatives: spectroscopic, DFT, and molecular docking studies. Spectrochim Acta A. 2022;272:120971. https://doi.org/10.1016/j.saa.2022.120971.
Mohamed GG, Hamed MM, Zaki NG, Abdou MM, Mohamed ME, Abdallah AM. Melatonin charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone: molecular structure, DFT studies, thermal analyses, evaluation of biological activity and utility for determination of melatonin in pure and dosage forms. Spectrochim Acta A. 2017;182:143. https://doi.org/10.1016/j.saa.2017.03.068.
Pourmohammad P, Alipanah-Moghadam R, Nemati A, Malekzadeh V, Mahmoodzadeh Y. Comparison of the effects of zinc oxide and zinc oxide nanoparticles on the expression of hepcidin gene in rat liver. Horm Mol Biol Clin Investig. 2021;42:43–8. https://doi.org/10.1515/hmbci-2020-0038.
Smital K, Niharik S, Mansee T. Sub-acute toxicity assessment of green synthesized hematite nanoparticles (α-Fe2O3 NPs) using Wistar Rat. Res J Biotechnol. 2020;15:121–35.
Zhang ZY, Xiong HM. Photoluminescent ZnO nanoparticles and their biological applications. Materials. 2015;8(6):3101–27.
Xiong HM. ZnO nanoparticles applied to bioimaging and drug delivery. Adv Mater. 2013;25(37):5329–35. https://doi.org/10.1002/adma.201301732.
Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today. 2017;22(12):1825–34.
Wu W, Wu Z, Yu T, Jiang C, Kim WS. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater. 2015;16(2):023501.
Huang DM, Hsiao JK, Chen YC, Chien LY, Yao M, Chen YK, Ko BS, Hsu SC, Tai LA, Cheng HY, Wang SW, Yang CS, Chen YC. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials. 2009;30(22):3645–51.