Nghiên cứu Thực nghiệm, Lý thuyết và Số trong Ứng xử Nén của Các Ống Đầy Bọt Kim Loại Đa Lớp

Journal of Materials Engineering and Performance - Tập 31 - Trang 3723-3740 - 2022
M. Salehi1, S. M. H. Mirbagheri1, A. Jafari Ramiani1
1Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran

Tóm tắt

Nghiên cứu này nhằm khám phá hành vi nén và khả năng hấp thụ năng lượng của các ống đầy bọt được phân lớp rời rạc. Các bọt kín tế bào làm từ kẽm, nhôm và hợp kim A356 được sản xuất bằng phương pháp đúc được sử dụng làm vật liệu bổ sung trục cho nhiều cấu hình của các cấu trúc phân tầng chức năng. Kết quả cho thấy các ống bọt đa lớp cho ra các phản ứng tĩnh hiệp nhiều và sự gia tăng độ căng dần theo quá trình sụp đổ từ thành phần mật độ thấp. Bằng cách điều chỉnh mật độ bọt và vật liệu, các ống đầy bọt phân lớp hứa hẹn có khả năng điều chỉnh độ võng tại vị trí mong muốn và cung cấp bảo vệ tốt hơn. Các cấu trúc đa lớp thường cho thấy khả năng chịu va chạm vượt trội so với các cấu trúc đơn lớp, và năng lượng hấp thụ tĩnh hiệp tối đa đạt được là 10.5 J/g đối với Al‒A356/2FT. Tính dẻo của các ống đầy bọt đa lớp có thể được mô tả bởi mô hình tiệm cận dựa trên mật độ, độ bền và tỷ lệ chiều cao của các thành phần đồng nhất. Hành vi va chạm bằng trọng lực của các cấu trúc phân lớp có thể được dự đoán bằng mô hình phần tử hữu hạn trong LS-DYNA, và các kết quả mô phỏng tương đồng tốt với các thí nghiệm cả về phản ứng động học và mẫu nghiền.

Từ khóa

#hành vi nén #ống đầy bọt #cấu trúc phân tầng chức năng #năng lượng hấp thụ #mô hình phần tử hữu hạn

Tài liệu tham khảo

D.K. Rajak, N.N. Mahajan and E. Linul, Crashworthiness Performance and Microstructural Characteristics of Foam-filled Thin-walled Tubes under Diverse Strain Rate, J. Alloys Compd., 2019, 775, p 675–689. A. Baroutaji, M. Saga and A.G. Olabi, On the Crashworthiness Performance of Thin-walled Energy Absorbers: Recent Advances and Future Developments, Thin Walled Struct., 2017, 118, p 137–163. Y. Duan, X. Zhao, Z. Liu, N. Hou, H. Liu, B. Du, B. Hou and Y. Li, Dynamic Response of Additively Manufactured Graded Foams, Compos. B, 2020, 183, p 1–15. U.A. Atturan, S.H. Nandam, B.S. Murty and S. Sankaran, Deformation Behaviour of In-situ TiB2 Reinforce A357 Aluminium Alloy Composite Foams Under Compressive and Impact Loading, Mater. Sci. Eng. A, 2017, 684, p 178–185. M.A. Islam, A.D. Brown, P.J. Hazell, M.A. Kader, J.P. Escobedo, M. Saadatfar, S. Xu, D. Ruan and M. Turner, Mechanical Response and Dynamic Deformation Mechanisms of Closed-cell Aluminium Alloy Foams under Dynamic Loading, Int. J. Impact Eng., 2018, 114, p 111–122. Z. Li, R. Chen and F. Lu, Comparative Analysis of Crashworthiness of Empty and Foam-filled Thin-walled Tubes, Thin Walled Struct., 2018, 124, p 343–349. M. Li, S. Barbat, R. Baccouche, J. Belwafa and W. Lu, Enhanced Energy Mitigation of Thin-walled Filled with Liquid Nanofoam Under Dynamic Impact, Compos. B, 2020, 193, p 1–10. J. Fang, Y. Gao, X. An, G. Sun, J. Chena and Q. Li, Design of Transversely-graded Foam and Wall Thickness Structures for Crashworthiness Criteria, Compos. B, 2016, 92, p 338–349. X. Lijun and S. Weidong, Additively-Manufactured Functionally Graded Ti-6Al-4V Lattice Structures with High Strength under Static and Dynamic Loading: Experiments, Int. J. Impact Eng., 2018, 111, p 255–272. Y. Duan, X. Zhao, B. Du, X. Shi, H. Zhao, B. Hou and Y. Li, Quasi-static Compressive Behavior and Constitutive Model of Graded Foams, Int. J. Mech. Sci., 2020, 177, p 1–14. J. Zhang, L. Chen, H. Wu, Q. Fang and Y. Zhang, Experimental and Mesoscopic Investigation of Double-Layer Aluminum Foam under Impact Loading, Compos. Struct., 2020, 241, p 1–12. P.J. Tan, S.R. Reid and J.J. Harrigan, On the Dynamic Mechanical Properties of Open-cell Metal Foams—A Re-assessment of the ‘Simple-shock Theory,’ Int. J. Solids Struct., 2012, 49, p 2744–2753. V.S. Deshpande and N.A. Fleck, High Strain Rate Compressive Behaviour of Aluminium Alloy Foams, Int. J. Impact Eng., 2000, 24, p 277–298. R. Huang, S. Ma, M. Zhang, J. Xu and Z. Wang, Dynamic Deformation and Failure Process of Quasi-closed-cell Aluminum Foam Manufactured by Direct Foaming Technique, Mater. Sci. Eng. A, 2019, 756, p 302–313. Y. Wu, L. Tang, Z. Liu, Y. Liu, Z. Liang and X. Zhang, Numerical Study of the Shape Irregularity Gradient in Metallic Foams Under Different Impact Velocities, J. Mater. Eng. Perform., 2017, 26, p 3892–3900. B.H.G. Jigh, H.H. Toudeshky and M.A. Farsi, Experimental and Multi-scale Analyses of Open-Celled Aluminum Foam with Hole under Compressive Quasi-Static Loading, J. Alloys Compd., 2017, 695, p 133–141. H. Fang, J. Bi, C. Zhang, M. Gutowski, E. Palta and Q. Wang, A Constitutive Model of Aluminum Foam for Crash Simulations, Int. J. Non Linear Mech., 2017, 90, p 124–136. Y. Sun and Q.M. Li, Dynamic Compressive Behaviuor of Cellular Materials: A Review of Phenomenon, Mechanism and Modeling, Int. J. Impact Eng., 2018, 112, p 74–115. A.G. Hanssen, M. Langseth and O.S. Hopperstad, Static and Dynamic Crushing of Square Aluminium Extrusions with Aluminium Foam Filler, Int. J. Impact Eng., 2000, 24, p 347–383. S. Pattofatto, I. Elnasri, H. Zhao, H. Tsitsiris, F. Hild and Y. Girard, Shock Enhancement of Cellular Structures under Impact Loading: Part II Analysis, J. Mech. Phys. Solids, 2007, 55, p 2672–2686. V.S. Deshpande and N.A. Fleck, Multiobjective Crashworthiness Optimization of Functionally Lateral Graded Foam-filled Tubes, J. Mech. Phys. Solids, 2000, 48, p 1253–1283. A. Reyes, O.S. Hopperstad, T. Berstad, A.G. Hanssen and M. Langseth, Constitutive Modeling of Aluminum Foam Including Fracture and Statistical Variation of Density, Eur. J. Mech. A. Solids, 2003, 22, p 815–835. G. Sun, G. Li, S. Hou, S. Zhou, W. Li and Q. Li, Crashworthiness Design for Functionally Graded Foam-Filled Thin-walled Structures, Mater. Sci. Eng. A, 2010, 527, p 1911–1919. H. Yin, G. Wen, S. Hou and Q. Qing, Multiobjective Crashworthiness Optimization of Functionally Lateral Graded Foam-Filled Tubes, Mater. Des., 2013, 44, p 414–428. M.S. Attia, S.A. Meguid and H. Nouraei, Nonlinear Finite Element Analysis of the Crush Behavior of Functionally Graded Foam-Filled Columns, Finite Elem. Anal. Des., 2012, 61, p 50–59. Y. Hangai, N. Kubota, T. Utsunomiya, H. Kawashima, O. Kuwazuru and N. Yoshikawa, Drop Weight Impact Behavior of Functionally Graded Aluminum Foam Consisting of A1050 and A6061 Aluminum Alloys, Mater Sci Eng A, 2015, 639, p 597–603. Y. Zhang, S.Y. He, J.G. Liu, W. Zhao, X.L. Gong and J. Yu, Density Gradient Tailoring of Aluminum Foam-filled Tube, Compos. Struct., 2019, 220, p 451–459. M. Salehi, S.M.H. Mirbagheri and M. Arabkohi, Compressive and Energy Absorption Behavior of Multilayered Foam Filled Tubes, Metall. Mater. Trans. A, 2019, 50A, p 5494–5509. M. Salehi, S.M.H. Mirbagheri and A.J. Ramiani, Deformation Behavior and Crashworthiness of Functionally Graded Metallic Foam-Filled Tubes under Drop-weight Impact Testing, Metall. Mater. Trans. A, 2020, 51A, p 5120–5138. “Mechanical Testing of Metals-Ductility Testing-Compression Test for Porous and Cellular Metals,” 13314, ISO, 2011 “Metallic Materials-Ductility Testing-High Speed Compression Test for Porous and Cellular Metals,” 17340, ISO, 2014 G. Sun, T. Liu, X. Huang, G. Zheng and Q. Li, Topological Configuration Analysis and Design for Foam Filled Multi-Cell Tubes, Eng. Struct., 2018, 155, p 235–250. P.J. Tan, J.J. Harrigan and S.R. Reid, Inertia Effects in Uniaxial Dynamic Compression of A Closed Cell Aluminum Alloy Foam, Mater. Sci. Technol., 2012, 18, p 480–488. G. Li, Z. Zhang, G. Sun, F. Xu and X. Huang, Crushing Analysis and Multiobjective Optimization for Functionally Graded Foam-filled Tubes Under Multiple Load Cases, Int. J. Mech. Sci., 2014, 89, p 439–452. J. Fan, J. Zhang, Z. Wang, Z. Li and L. Zhao, Dynamic Crushing Behavior of Random and Functionally Graded Metal Hollow Sphere Foams, Mater. Sci. Eng. A, 2013, 561, p 352–361. Alloy phase diagrams, ASM Handbook, 2nd ed., ASM International, Ohio, 1990 J. Liu, S. Yu, X. Zhu, M. Wei, Y. Luo and Y. Liu, Correlation Between Ceramic Additions and Compressive Properties of Zn-22Al Matrix Composite Foams, J. Alloys Compd., 2009, 476, p 220–225. M. Raghavan, Al-Ca-Zn (Aluminum-Calcium-Zinc), Phase Diagram Evaluations, ASM International, 2013, pp. 27‒29 S.W. Rahman and M. Medraj, A Thermodynamic Description of the Al-Ca-Zn Ternary System, Calphad, 2009, 33, p 584–598. M. Mukherjee, F.G. Moreno, C. Jimenez, A. Rack and J. Banhart, Correlation Between Ceramic Additions and Compressice Properties of Zn-22Al matrix composite foams, Acta Mater., 2017, 131, p 156–168. J.Y. Yuan and Y.X. Li, Effects of Cell Wall Property on Compressive Performance of Aluminum Foams, Trans. Nonferrous Met. Soc. china, 2015, 25, p 1619–1625. I. Cantat, S.C. Addad, F. Elias, F. Graner, R. Hohler, O. Pitois, F. Rouyer and A.S. Jalmes, Foams, Structure and dynamics, 1st ed. Oxford University Press, London, 2013, p 17–30 M. Li, J. Li, S. Barbat, R. Baccouche and W. Lu, Enhanced Filler-tube Wall Interaction in Liquid Nanofoam-Filled Thin-walled Tubes, Compos. Struct., 2018, 200, p 120–126. L.A. Kumaraswamidhas, D.K. Rajak and S. Das, An Investigation on Axial Deformation Behavior of Thin-Wall Unfilled and Filled Tube with Aluminum Alloy (Al-Si7Mg) Foam Reinforced with SiC Particles, J. Mater. Eng. Perform., 2016, 25, p 3430–3438. T. Dirgantara, A. Jusuf, E.O. Kurniati, L. Gunawan and I.S. Putra, Crashworthiness Analysis of Foam-filled Square Column Considering Strain Rate Effect of the Foam, Thin Walled Struct., 2018, 129, p 365–380. Y. Hangai, S. Otazawa and T. Utsunomiya, Aluminum Alloy Foam-filled Aluminum Tube Fabricated by Friction Stir Back Extrusion and Its Compression Properties, Compos. Struct., 2018, 183, p 416–422. C. Ge, Q. Gao, L. Wang and Z. Hong, Theoretical Prediction and Numerical Analysis for Axial Crushing Behaviour of Elliptical Aluminium Foam-Filled Tube, Thin Walled Struct., 2020, 149, p 1–10. B. Koohbor and A. Kidane, Design Optimization of Continuously and Discretely Graded Foam Materials for Efficient Energy Absorption, Int. J. Mech. Sci., 2013, 68, p 151–161. L. Maheo and P. Viot, Impact on Multi-layered Polypropylene Foams, Int. J. Impact Eng., 2013, 53, p 84–93. N. Gardner, E. Wang and A. Shukla, Performance of Functionally Graded Sandwich Composite Beams Under Shock Wave Loading, Compos. Struct., 2012, 94, p 1755–1770. Y. Hangai, K. Zushida, H. Fujii, O. Kuwazuru and N. Yoshikawa, Fabrication and Compression Properties of Functionally Graded Copper Foam Made Using Friction Powder Sintering and Dissolution, J. Mater. Eng. Perform., 2017, 26, p 4508–4513. Y. Hangai, T. Morita and T. Utsunomiya, Functionally Graded Aluminum Foam Consisting of Dissimilar Aluminum Alloys Fabricated by Sintering and Dissolution Process, Mater. Sci. Eng. A, 2017, 696, p 544–551. L.J. Gibson and M.F. Ashby, Cellular Solids, Structure and Properties, 2nd ed. Cambridge Solid State Science Series, London, 1997, p 175–231 G.E. Freger, V.N. Kestelman and D.G. Freger, Spirally Anisotropic Composites, Springer-Verlag, Berlin Heidelberg, 2004. Y.T. Jamshidi, A.P. Anaraki, M. Sadighi, J. Kadkhodapour, S.M.H. Mibagheri and B. Akhavan, Micro-structure Analysis of Quasi-Static Crushing and Low Velocity Impact Behavior of Graded Composite Metallic Foam Filled Tube, Met. Mater. Int., 2019, 145, p 1–14. A.G. Hanssen, O.S. Hopperstad, M. Langseth and H. Ilstad, Validation of Constitutive Models Applicable to Aluminum Foams, Int. J. Mech. Sci., 2002, 44, p 359–406. F. Xiong, D. Wang and S. Yin, Optimization Analysis of Novel Foam-filled Elliptical Columns under Multiple Oblique Impact Loading, Mater. Des., 2018, 156, p 198–214.