Nghiên cứu thực nghiệm về hành vi tiến triển hư hỏng của than dưới các thí nghiệm tách Brazil động dựa trên thanh áp suất Hopkinson phân tách và tương quan hình ảnh số

Springer Science and Business Media LLC - Tập 32 - Trang 1435-1457 - 2023
Xiaoliang Li1,2, Zhentang Liu1,2, Enlai Zhao1,2, Yubing Liu1,2, Xiaojun Feng1,2, Zhoujie Gu1,2
1Key Laboratory of Gas and Fire Control for Coal Mines, Ministry of Education, China University of Mining and Technology, Xuzhou, China
2School of Safety Engineering, China University of Mining and Technology, Xuzhou, China

Tóm tắt

Việc hiểu biết đầy đủ về hành vi kéo dãn động của than có ý nghĩa lớn trong việc ngăn ngừa và kiểm soát hiện tượng nổ đá trong quá trình khai thác tài nguyên than ngầm. Trong nghiên cứu này, thanh áp suất Hopkinson phân tách và tương quan hình ảnh số đã được sử dụng để tiến hành các thí nghiệm tách Brazil động trên than nhằm khám phá hành vi kéo dãn động của nó. Những hành vi phát triển của độ dịch chuyển theo chiều dọc, vận tốc dịch chuyển và trường gia tốc dịch chuyển trong quá trình gãy kéo dãn động của than đã được điều tra; quá trình hư hỏng của than đã được đặc trưng một cách định lượng; và mối quan hệ giữa hư hỏng và năng lượng đã được phân tích. Kết quả cho thấy các giá trị tuyệt đối của độ dịch chuyển, vận tốc dịch chuyển, và gia tốc dịch chuyển dần dần mở rộng theo trục trung tâm đến các đầu trên và dưới của than. Độ dịch chuyển thay đổi dưới dạng vận tốc và gia tốc biến đổi, chứng minh rằng hư hỏng của than tiến triển dưới dạng vận tốc và gia tốc biến đổi. Gia tốc hư hỏng đạt cực đại sớm nhất, tiếp theo là vận tốc hư hỏng, và mức độ hư hỏng đứng sau cùng. Trước ứng suất cực đại, năng lượng hấp thụ chỉ có thể gây ra hư hỏng nhẹ cho than nhưng dẫn đến vận tốc và gia tốc hư hỏng cao. Sau ứng suất cực đại, một lượng năng lượng hấp thụ bổ sung nhỏ có thể dẫn đến hư hỏng nặng hơn cho than, với vận tốc hư hỏng cao và gia tốc hư hỏng thấp. Mặc dù cường độ, năng lượng, độ dịch chuyển, vận tốc dịch chuyển, và gia tốc dịch chuyển của than ở các vận tốc va chạm khác nhau thì khác nhau, nhưng hình thái tiến triển và chế độ hư hỏng của chúng lại tương tự.

Từ khóa

#than #hành vi kéo dãn #thí nghiệm tách Brazil #thanh áp suất Hopkinson #tương quan hình ảnh số #tiến triển hư hỏng

Tài liệu tham khảo

Ai, D., Zhao, Y., Wang, Q., & Li, C. (2019). Experimental and numerical investigation of crack propagation and dynamic properties of rock in SHPB indirect tension test. International Journal of Impact Engineering, 126, 135–146. Ai, D., Zhao, Y., Wang, Q., & Li, C. (2020). Crack propagation and dynamic properties of coal under SHPB impact loading: Experimental investigation and numerical simulation. Theoretical and Applied Fracture Mechanics, 105, 102393. Cheng, Z., Pan, H., Zou, Q., Li, Z., Chen, L., Cao, J., et al. (2021). Gas flow characteristics and optimization of gas drainage borehole layout in protective coal seam mining: A case study from the Shaqu Coal Mine, Shanxi Province, China. Natural Resources Research, 30(2), 1481–1493. Cong, Y., Zhai, C., Sun, Y., Xu, J., Tang, W., & Zheng, Y. (2021). Visualized study on the mechanism of temperature effect on coal during liquid nitrogen cold shock. Applied Thermal Engineering, 194, 116988. Feng, J., Wang, E., Chen, L., Li, X., Xu, Z., & Li, G. (2016a). Experimental study of the stress effect on attenuation of normally incident P-wave through coal. Journal of Applied Geophysics, 8. Feng, J., Wang, E., Shen, R., Chen, L., Li, X., & Li, N. (2016b). A source generation model for near-field seismic impact of coal fractures in stress concentration zones. Journal of Geophysics and Engineering, 13(4), 516–525. Feng, X., Zhang, Q., Wang, E., Ali, M., Dong, Z., & Zhang, G. (2020). 3D modeling of the influence of a splay fault on controlling the propagation of nonlinear stress waves induced by blast loading. Soil Dynamics and Earthquake Engineering, 138, 106335. Gao, G., Huang, S., Xia, K., & Li, Z. (2015). Application of digital image correlation (DIC) in dynamic notched semi-circular bend (NSCB) tests. Experimental Mechanics, 55(1), 95–104. Gong, S., Zhou, L., Wang, Z., & Wang, W. (2021). Effect of bedding structure on the energy dissipation characteristics of dynamic tensile fracture for water-saturated coal. Geofluids, 2021, 1–10. Gu, Z., Shen, R., Liu, Z., Zhao, E., Chen, H., Yuan, Z., Chu, X., & Tian, J. (2023). Dynamic characteristics of coal under triaxial constraints based on the split–hopkinson pressure bar test system. Natural Resources Research, 32(2), 587–601. https://doi.org/10.1007/s11053-022-10152-6 Han, Z., Li, D., & Li, X. (2022). Effects of axial pre-force and loading rate on Mode I fracture behavior of granite. International Journal of Rock Mechanics and Mining Sciences, 157, 105172. Hao, X., Du, W., Zhao, Y., Sun, Z., Zhang, Q., Wang, S., & Qiao, H. (2020). Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading. International Journal of Mining Science and Technology, 30(5), 659–668. Kong, X., Li, S., Wang, E., Ji, P., Wang, X., Shuang, H., & Zhou, Y. (2021a). Dynamics behaviour of gas-bearing coal subjected to SHPB tests. Composite Structures, 256, 113088. Kong, X., Li, S., Wang, E., Wang, X., Zhou, Y., Ji, P., et al. (2021b). Experimental and numerical investigations on dynamic mechanical responses and failure process of gas-bearing coal under impact load. Soil Dynamics and Earthquake Engineering, 142, 106579. Li, C., Xu, Y., Chen, P., Li, H., & Lou, P. (2020a). Dynamic mechanical properties and fragment fractal characteristics of fractured coal–rock-like combined bodies in split Hopkinson pressure bar tests. Natural Resources Research, 29(5), 3179–3195. Li, C., Zuo, J., Wei, C., Xu, X., Zhou, Z., Li, Y., & Zhang, Y. (2020b). Fracture development at laminated floor layers under longwall face in deep coal mining. Natural Resources Research, 29(6), 3857–3871. Li, D., Gao, F., Han, Z., & Zhu, Q. (2020c). Experimental evaluation on rock failure mechanism with combined flaws in a connected geometry under coupled static-dynamic loads. Soil Dynamics and Earthquake Engineering, 132, 106088. Li, H., Shen, R., Wang, E., Li, D., Li, T., Chen, T., & Hou, Z. (2020d). Effect of water on the time-frequency characteristics of electromagnetic radiation during sandstone deformation and fracturing. Engineering Geology, 265, 105451. Li, J., Zhao, J., Wang, H. C., Liu, K., & Zhang, Q. B. (2021a). Fracturing behaviours and AE signatures of anisotropic coal in dynamic Brazilian tests. Engineering Fracture Mechanics, 252, 107817. Li, X., Liu, Z., Feng, X., Zhang, H., & Feng, J. (2021b). Effects of acid sulfate and chloride ion on the pore structure and mechanical properties of sandstone under dynamic loading. Rock Mechanics and Rock Engineering, 54(12), 6105–6121. Li, X., Wang, S., Xia, K., & Tong, T. (2021c). Dynamic tensile response of a microwave damaged granitic rock. Experimental Mechanics, 61(3), 461–468. Li, Y., Dai, F., Liu, Y., & Wei, M. (2022). Experimental evaluation of the transient propagation fracture properties of rocks under dynamic mode I loading: An insight from digital image correlation. Theoretical and Applied Fracture Mechanics, 119, 103370. Liu, X., Liu, Y., Dai, F., & Yan, Z. (2022). Tensile mechanical behavior and fracture characteristics of sandstone exposed to freeze-thaw treatment and dynamic loading. International Journal of Mechanical Sciences, 226, 107405. Mondal, D., & Roy, P. N. S. (2019). Fractal and seismic b-value study during dynamic roof displacements (roof fall and surface blasting) for enhancing safety in the longwall coal mines. Engineering Geology, 253, 184–204. Sharafisafa, M., Aliabadian, Z., & Shen, L. (2020). Crack initiation and failure development in bimrocks using digital image correlation under dynamic load. Theoretical and Applied Fracture Mechanics, 109, 102688. Shi, X., Zhao, Y., Yao, W., Gong, S., & Danesh, N. N. (2022). Dynamic tensile failure of layered sorptive rocks: Shale and coal. Engineering Failure Analysis, 138, 106346. Song, Y., & Yue, Z. (2021). Experimental study on dynamic fracture behaviors of Beishan NSCB and CCNSCB granite specimens under different loading rates. Soil Dynamics and Earthquake Engineering, 141, 106512. Tan, L., Ren, T., Yang, X., & He, X. (2018). A numerical simulation study on mechanical behaviour of coal with bedding planes under coupled static and dynamic load. International Journal of Mining Science and Technology, 28(5), 791–797. Tong, W. (2005). An evaluation of digital image correlation criteria for strain mapping applications. Strain, 41(4), 167–175. Vardar, O., Wei, C., Zhang, C., & Canbulat, I. (2022). Numerical investigation of impacts of geological faults on coal burst proneness during roadway excavation. Bulletin of Engineering Geology and the Environment, 81(1), 2. Wang, H., Jiang, Y., Xue, S., Pang, X., Lin, Z., & Deng, D. (2017). Investigation of intrinsic and external factors contributing to the occurrence of coal bumps in the mining area of Western Beijing, China. Rock Mechanics and Rock Engineering, 50(4), 1033–1047. Wang, H. C., Zhao, J., Li, J., Wang, H. J., Braithwaite, C. H., & Zhang, Q. B. (2022). Fracturing and AE characteristics of matrix-inclusion rock types under dynamic Brazilian testing. International Journal of Rock Mechanics and Mining Sciences, 157, 105164. Wang, P., & Luan, H. (2022). Size effect analysis of remaining coal pillar on rock burst caused by fault. Bulletin of Engineering Geology and the Environment, 81(3), 108. Wang, W., Cheng, Y., Wang, H., Liu, H., Wang, L., Li, W., & Jiang, J. (2015). Fracture failure analysis of hard–thick sandstone roof and its controlling effect on gas emission in underground ultra-thick coal extraction. Engineering Failure Analysis, 54, 150–162. Wang, X., Li, S., Xu, Z., Xue, Y., Hu, J., Li, Z., & Zhang, B. (2019). An interval fuzzy comprehensive assessment method for rock burst in underground caverns and its engineering application. Bulletin of Engineering Geology and the Environment, 78(7), 5161–5176. Wu, Y., Gao, F., Chen, J., & He, J. (2019). Experimental study on the performance of rock bolts in coal burst-prone mines. Rock Mechanics and Rock Engineering, 52(10), 3959–3970. Xie, H., Yang, L., Zhang, Q., Huang, C., Chen, M., & Zhao, K. (2022). Research on energy dissipation and damage evolution of dynamic splitting failure of basalt fiber reinforced concrete. Construction and Building Materials, 330, 127292. Xing, H. Z., Zhang, Q. B., Ruan, D., Dehkhoda, S., Lu, G. X., & Zhao, J. (2018). Full-field measurement and fracture characterisations of rocks under dynamic loads using high-speed three-dimensional digital image correlation. International Journal of Impact Engineering, 113, 61–72. Yan, Z., Dai, F., Liu, Y., Wei, M., & You, W. (2021a). New insights into the fracture mechanism of flattened Brazilian disc specimen using digital image correlation. Engineering Fracture Mechanics, 252, 107810. Yan, Z., Dai, F., Zhu, J., & Xu, Y. (2021b). Dynamic cracking behaviors and energy evolution of multi-flawed rocks under static pre-compression. Rock Mechanics and Rock Engineering, 54(9), 5117–5139. Yang, E., Lin, H., Li, S., Zhao, P., Qin, L., Wang, R., & Han, S. (2022). Characteristic strength and energy evolution law of coal treated by ultrasonic wave with different power under uniaxial compression. Natural Resources Research, 31(2), 913–928. Yin, T., Peng, K., Wang, L., Wang, P., Yin, X., & Zhang, Y. (2016). Study on impact damage and energy dissipation of coal rock exposed to high temperatures. Shock and Vibration, 2016, 5121932. Yin, Z., Chen, W., Hao, H., Chang, J., Zhao, G., Chen, Z., & Peng, K. (2020). Dynamic compressive test of gas-containing coal using a modified split Hopkinson pressure bar system. Rock Mechanics and Rock Engineering, 53(2), 815–829. Zhang, Q., Wang, E., Feng, X., Niu, Y., Ali, M., Lin, S., & Wang, H. (2020). Rockburst risk analysis during high-hard roof breaking in deep mines. Natural Resources Research, 29(6), 4085–4101. Zhang, Q., Wang, E., Feng, X., Wang, C., Qiu, L., & Wang, H. (2021). Assessment of rockburst risk in deep mining: An improved comprehensive index method. Natural Resources Research, 30(2), 1817–1834. Zhang, Q. B., & Zhao, J. (2014). A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mechanics and Rock Engineering, 47(4), 1411–1478. Zhang, Z. X., Kou, S. Q., & Jiang, L. G. (2000). Effects of loading rate on rock fracture: Fracture characteristics and energy partitioning. International Journal of Rock Mechanics and Mining Sciences, 37(5), 745–762. Zhao, T., Guo, W., Tan, Y., Lu, C., & Wang, C. (2018). Case histories of rock bursts under complicated geological conditions. Bulletin of Engineering Geology and the Environment, 77(4), 1529–1545. Zhao, Y., Zhao, G.-F., Jiang, Y., Elsworth, D., & Huang, Y. (2014). Effects of bedding on the dynamic indirect tensile strength of coal: Laboratory experiments and numerical simulation. International Journal of Coal Geology, 132, 81–93. Zhou, T., Han, Z., Li, D., & Chen, J. (2022). Experimental study of the mechanical and fracture behavior of flawed sandstone subjected to coupled static-repetitive impact loading. Theoretical and Applied Fracture Mechanics, 117, 103161. Zhou, X. P., Qian, Q. H., & Yang, H. Q. (2011). Rock burst of deep circular tunnels surrounded by weakened rock mass with cracks. Theoretical and Applied Fracture Mechanics, 56(2), 79–88. Zhou, Y. X., Xia, K., Li, X. B., Li, H. B., Ma, G. W., Zhao, J., et al. (2012). Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. International Journal of Rock Mechanics and Mining Sciences, 49, 105–112. Zhou, Z., Cai, X., Chen, L., Cao, W., Zhao, Y., & Xiong, C. (2017). Influence of cyclic wetting and drying on physical and dynamic compressive properties of sandstone. Engineering Geology, 220, 1–12. Zhou, Z., Li, X., Zou, Y., Jiang, Y., & Li, G. (2014). Dynamic Brazilian tests of granite under coupled static and dynamic loads. Rock Mechanics and Rock Engineering, 47(2), 495–505.