Expectile regression for analyzing heteroscedasticity in high dimension

Statistics and Probability Letters - Tập 137 - Trang 304-311 - 2018
Jun Zhao1,2, Yingyu Chen1, Yi Zhang2
1Zhejiang University City College, China
2School of Mathematical Sciences, Zhejiang University, China

Tài liệu tham khảo

Aigner, 1976, On the estimation of production frontiers: maximum likelihood estimation of the parameters of a discontinuous density function, Internat. Econom. Rev., 377, 10.2307/2525708 Breiman, 1996, Heuristics of instability and stabilization in model selection, Ann. Statist., 24, 2350, 10.1214/aos/1032181158 Fan, 2014, Adaptive robust variable selection, Ann. Statist., 42, 324, 10.1214/13-AOS1191 Fan, 2001, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Amer. Statist. Assoc., 96, 1348, 10.1198/016214501753382273 Fan, 2017, Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions, J. Roy. Statist. Soc., 79, 247, 10.1111/rssb.12166 Fan, 2011, Nonconcave penalized likelihood with np-dimensionality, IEEE Trans. Inform. Theory, 57, 5467, 10.1109/TIT.2011.2158486 Fan, 2004, Nonconcave penalized likelihood with a diverging number of parameters, Ann. Statist., 32, 928, 10.1214/009053604000000256 Gu, 2016, High-dimensional generalizations of asymmetric least squares regression and their applications, Ann. Statist., 44, 2661, 10.1214/15-AOS1431 Huang, 2011, Activated tlr signaling in atherosclerosis among women with lower framingham risk score: the multi-ethnic study of atherosclerosis, PLoS One, 6, e21067, 10.1371/journal.pone.0021067 Kim, 2008, Smoothly clipped absolute deviation on high dimensions, J. Amer. Statist. Assoc., 103, 1665, 10.1198/016214508000001066 Le Thi Hoai, 1997, Solving a class of linearly constrained indefinite quadratic problems by DC algorithms, J. Global Optim., 11, 253, 10.1023/A:1008288411710 Lilliefors, 1967, On the Kolmogorov–Smirnov test for normality with mean and variance unknown, J. Amer. Statist. Assoc., 62, 399, 10.1080/01621459.1967.10482916 Negahban, 2009, A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, 1348 Newey, 1987, Asymmetric least squares estimation and testing, Econometrica, 819, 10.2307/1911031 Schnabel, 2009, Optimal expectile smoothing, Comput. Statist. Data Anal., 53, 4168, 10.1016/j.csda.2009.05.002 Sobotka, 2012, Geoadditive expectile regression, Comput. Statist. Data Anal., 56, 755, 10.1016/j.csda.2010.11.015 Tibshirani, 1996, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 267 Waltrup, 2015, Expectile and quantile regressionDavid and Goliath?, Stat. Model., 15, 433, 10.1177/1471082X14561155 Wang, 2012, Quantile regression for analyzing heterogeneity in ultra-high dimension, J. Amer. Statist. Assoc., 107, 214, 10.1080/01621459.2012.656014 Wu, 2009, Variable selection in quantile regression, Statist. Sinica, 801 Ye, 2010, Rate minimaxity of the Lasso and Dantzig selector for the lq loss in lr balls, J. Mach. Learn. Res., 11, 3519 Yuille, 2003, The concave-convex procedure, Neural Comput., 15, 915, 10.1162/08997660360581958