Expectile regression for analyzing heteroscedasticity in high dimension
Tài liệu tham khảo
Aigner, 1976, On the estimation of production frontiers: maximum likelihood estimation of the parameters of a discontinuous density function, Internat. Econom. Rev., 377, 10.2307/2525708
Breiman, 1996, Heuristics of instability and stabilization in model selection, Ann. Statist., 24, 2350, 10.1214/aos/1032181158
Fan, 2014, Adaptive robust variable selection, Ann. Statist., 42, 324, 10.1214/13-AOS1191
Fan, 2001, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Amer. Statist. Assoc., 96, 1348, 10.1198/016214501753382273
Fan, 2017, Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions, J. Roy. Statist. Soc., 79, 247, 10.1111/rssb.12166
Fan, 2011, Nonconcave penalized likelihood with np-dimensionality, IEEE Trans. Inform. Theory, 57, 5467, 10.1109/TIT.2011.2158486
Fan, 2004, Nonconcave penalized likelihood with a diverging number of parameters, Ann. Statist., 32, 928, 10.1214/009053604000000256
Gu, 2016, High-dimensional generalizations of asymmetric least squares regression and their applications, Ann. Statist., 44, 2661, 10.1214/15-AOS1431
Huang, 2011, Activated tlr signaling in atherosclerosis among women with lower framingham risk score: the multi-ethnic study of atherosclerosis, PLoS One, 6, e21067, 10.1371/journal.pone.0021067
Kim, 2008, Smoothly clipped absolute deviation on high dimensions, J. Amer. Statist. Assoc., 103, 1665, 10.1198/016214508000001066
Le Thi Hoai, 1997, Solving a class of linearly constrained indefinite quadratic problems by DC algorithms, J. Global Optim., 11, 253, 10.1023/A:1008288411710
Lilliefors, 1967, On the Kolmogorov–Smirnov test for normality with mean and variance unknown, J. Amer. Statist. Assoc., 62, 399, 10.1080/01621459.1967.10482916
Negahban, 2009, A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, 1348
Newey, 1987, Asymmetric least squares estimation and testing, Econometrica, 819, 10.2307/1911031
Schnabel, 2009, Optimal expectile smoothing, Comput. Statist. Data Anal., 53, 4168, 10.1016/j.csda.2009.05.002
Sobotka, 2012, Geoadditive expectile regression, Comput. Statist. Data Anal., 56, 755, 10.1016/j.csda.2010.11.015
Tibshirani, 1996, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 267
Waltrup, 2015, Expectile and quantile regressionDavid and Goliath?, Stat. Model., 15, 433, 10.1177/1471082X14561155
Wang, 2012, Quantile regression for analyzing heterogeneity in ultra-high dimension, J. Amer. Statist. Assoc., 107, 214, 10.1080/01621459.2012.656014
Wu, 2009, Variable selection in quantile regression, Statist. Sinica, 801
Ye, 2010, Rate minimaxity of the Lasso and Dantzig selector for the lq loss in lr balls, J. Mach. Learn. Res., 11, 3519
Yuille, 2003, The concave-convex procedure, Neural Comput., 15, 915, 10.1162/08997660360581958