Expansion of microbial-induced carbonate factory into deeper water after the Permian-Triassic mass extinction
Tài liệu tham khảo
Bau, 1996, Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa, Precambrian Res., 79, 37, 10.1016/0301-9268(95)00087-9
Bau, 1999, Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater, Chem. Geol., 155, 77, 10.1016/S0009-2541(98)00142-9
Baud, 2007, The lower Triassic anachronistic carbonate facies in space and time, Glob. Planet. Chang., 55, 81, 10.1016/j.gloplacha.2006.06.008
Beauchamp, 2002, Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline circulation, Palaeogeogr. Palaeoclimatol. Palaeoecol., 184, 37, 10.1016/S0031-0182(02)00245-6
Bergmann, 2013, Biological influences on seafloor carbonate precipitation, Palaios, 28, 99, 10.2110/palo.2012.p12-088r
Bernasconi, 2017, An evaporite-based high-resolution sulfur isotope record of late Permian and Triassic seawater sulfate, Geochim. Cosmochim. Acta, 204, 331, 10.1016/j.gca.2017.01.047
Bolhar, 2007, A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates, Precambrian Res., 155, 229, 10.1016/j.precamres.2007.02.002
Bontognali, 2014, Microbially influenced formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria, Terra Nova, 26, 72, 10.1111/ter.12072
Brennecka, 2011, Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction, Proc. Natl. Acad. Sci. U. S. A., 108, 17631, 10.1073/pnas.1106039108
Brühwiler, 2009, The Lower Triassic sedimentary and carbon isotope records from Tulong (South Tibet) and their significance for Tethyan palaeoceanography, Sediment. Geol., 222, 314, 10.1016/j.sedgeo.2009.10.003
Bundeleva, 2012, Calcium carbonate precipitation by anoxygenic phototrophic bacteria, Chem. Geol., 291, 116, 10.1016/j.chemgeo.2011.10.003
Burgess, 2014, High-precision timeline for Earth’s most severe extinction, Proc. Natl. Acad. Sci. U. S. A., 111, 3316, 10.1073/pnas.1317692111
Cao, 2009, Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event, Earth Planet. Sci. Lett., 281, 188, 10.1016/j.epsl.2009.02.012
Chen, 2015, Complete biotic and sedimentary records of the Permian-Triassic transition from Meishan section, South China: Ecologically assessing mass extinction and its aftermath, Earth Sci. Rev., 149, 67, 10.1016/j.earscirev.2014.10.005
Chen, 2022, Microbial blooms triggered pyrite framboid enrichment and oxygen depletion in carbonate platforms immediately after the latest Permian extinction, Geophys. Res. Lett., 49
Cohen, 1986, Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria, Appl. Environ. Microbiol., 51, 398, 10.1128/aem.51.2.398-407.1986
Collin, 2015, Geochemistry of post-extinction microbialites as a powerful tool to assess the oxygenation of shallow marine water in the immediate aftermath of the end-Permian mass extinction, Int. J. Earth Sci., 104, 1025, 10.1007/s00531-014-1125-3
Dai, 2023, High-resolution early Triassic ammonoid biostratigraphy of South Tibet, China and implications for global correlations, Earth Sci. Rev., 239, 104384, 10.1016/j.earscirev.2023.104384
Dupraz, 2005, Microbial lithification in marine stromatolites and hypersaline mats, Trends Microbiol., 13, 429, 10.1016/j.tim.2005.07.008
Elrick, 2017, Global-ocean redox variation during the middle-late Permian through early Triassic based on uranium isotope and Th/U trends of marine carbonates, Geology, 45, 163, 10.1130/G38585.1
Ezaki, 2008, Geobiological aspects of the earliest Triassic microbialites along the southern periphery of the tropical Yangtze Platform: initiation and cessation of a microbial regime, Palaios, 23, 356, 10.2110/palo.2007.p07-035r
Fan, 1991, “Hydrozoa” from Middle and Upper Permian reefs of South China, J. Paleontol., 65, 45, 10.1017/S0022336000020199
Fan, 2023, Precipitation of high Mg-calcite and protodolomite using dead biomass of aerobic halophilic bacteria, J. Earth Sci., 34, 456, 10.1007/s12583-020-1108-1
Feng, 1997
Fio, 2010, Stable isotope and trace element stratigraphy across the Permian–Triassic transition: A redefinition of the boundary in the Velebit Mountain, Croatia, Chem. Geol., 278, 38, 10.1016/j.chemgeo.2010.09.001
Foster, 2020, Suppressed competitive exclusion enabled the proliferation of Permian/Triassic boundary microbialites, The Deposit. Rec., 6, 62, 10.1002/dep2.97
Friesenbichler, 2018, Sponge-microbial build-ups from the lowermost Triassic Chanakhchi section in southern Armenia: Microfacies and stable carbon isotopes, Palaeogeogr. Palaeoclimatol. Palaeoecol., 490, 653, 10.1016/j.palaeo.2017.11.056
Frimmel, 2009, Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator, Chem. Geol., 258, 338, 10.1016/j.chemgeo.2008.10.033
Garzanti, 1998, Permo-Triassic boundary and lower to Middle Triassic in South Tibet, J. Asian Earth Sci., 16, 143, 10.1016/S0743-9547(98)00007-5
Godbold, 2017, Precarious ephemeral refugia during the earliest Triassic, Geology, 45, 607, 10.1130/G38793.1
Golonka, 2002, Plate-tectonic maps of the Phanerozoic, 21
Gong, 2007, Microbial and molecular fossils from the Permian Zoophycos in South China, Sci. China Ser. D Earth Sci., 50, 1121, 10.1007/s11430-007-0080-2
Grice, 2005, Photic zone euxinia during the Permian-Triassic superanoxic event, Science, 307, 706, 10.1126/science.1104323
Heindel, 2015, Biogeochemical formation of calyx-shaped carbonate crystal fans in the subsurface of the Early Triassic seafloor, Gondwana Res., 27, 840, 10.1016/j.gr.2013.11.004
Heuer, 2021, The Permian-Triassic boundary section at Baghuk Mountain, Central Iran: Carbonate microfacies and depositional environment, Palaeobiodiversity and Palaeoenvironments, 1
Jiang, 2007, Restudy of conodont zonation and evolution across the P/T boundary at Meishan section, Changxing, Zhejiang, China, Glob. Planet. Chang., 55, 39, 10.1016/j.gloplacha.2006.06.007
Jiang, 2008, Filamentous cyanobacteria fossils and their significance in the Permian-Triassic boundary section at Laolongdong, Chongqing, Chin. Sci. Bull., 53, 1871, 10.1007/s11434-008-0172-1
Jiang, 2011, Revised conodont zonation and conodont evolution across the Permian–Triassic boundary at the Shangsi section, Guangyuan, Sichuan, South China, Glob. Planet. Chang., 77, 103, 10.1016/j.gloplacha.2011.04.003
Jin, 1996, The Selong section, candidate of the global stratotype section and point of the Permian-Triassic boundary, 127
Kershaw, 2017, Palaeogeographic variation in the Permian–Triassic boundary microbialites: A discussion of microbial and ocean processes after the end-Permian mass extinction, J. Palaeogeogr., 6, 97, 10.1016/j.jop.2016.12.002
Kershaw, 2012, Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis, Geobiology, 10, 25, 10.1111/j.1472-4669.2011.00302.x
Kershaw, 2021, Addressing a Phanerozoic carbonate facies conundrum—sponges or clotted micrite? Evidence from early Silurian reefs, South China Block, Sediment. Rec., 19, 3
Krause, 2012, Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma, Geology, 40, 587, 10.1130/G32923.1
Kremer, 2005, Cyanobacterial mats from Silurian black radiolarian cherts: Phototrophic life at the edge of darkness?, J. Sediment. Res., 75, 897, 10.2110/jsr.2005.069
Lau, 2022, Modeling the impacts of diagenesis on carbonate paleoredox proxies, Geochim. Cosmochim. Acta, 337, 123, 10.1016/j.gca.2022.09.021
Lau, 2016, Marine anoxia and delayed Earth system recovery after the end-Permian extinction, Proc. Natl. Acad. Sci., 113, 2360, 10.1073/pnas.1515080113
Lehrmann, 1999, Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang basin, South China, Geology, 27, 359, 10.1130/0091-7613(1999)027<0359:ETCMAB>2.3.CO;2
Li, 2017, Petrography and geochemistry of the Permian-Triassic boundary interval, Yangou section, South China: Implications for early Griesbachian seawater δ13CDIC gradient with depth, Sediment. Geol., 351, 10.1016/j.sedgeo.2017.02.008
Li, 2015, Global oolite deposits across the Permian–Triassic boundary: a synthesis and implications for palaeoceanography immediately after the end-Permian biocrisis, Earth Sci. Rev., 149, 163, 10.1016/j.earscirev.2014.12.006
Li, 2017, Oceanic environmental changes on a shallow carbonate platform (Yangou, Jiangxi Province, South China) during the Permian-Triassic transition: evidence from rare earth elements in conodont bioapatite, Palaeogeogr. Palaeoclimatol. Palaeoecol., 486, 6, 10.1016/j.palaeo.2017.02.035
Li, 2018, Lower Triassic deep sea carbonate precipitates from South Tibet, China, Sediment. Geol., 376, 60, 10.1016/j.sedgeo.2018.08.004
Li, 2018, A dolomitization event at the oceanic chemocline during the Permian-Triassic transition, Geology, 46, 1043, 10.1130/G45479.1
Li, 2019, Facies and evolution of the carbonate factory during the Permian–Triassic crisis in South Tibet, China, Sedimentology, 50, 3008, 10.1111/sed.12619
Li, 2019, Early Triassic oceanic red beds coupled with deep sea oxidation in South Tethys, Sediment. Geol., 391, 10.1016/j.sedgeo.2019.105519
Li, 2021, Phanerozoic variation in dolomite abundance linked to oceanic anoxia, Geology, 49, 698, 10.1130/G48502.1
Lozano, 2012, Exceptional preservation of Mn-oxidizing microbes in cave stromatolites (El Soplao, Spain), Sediment. Geol., 255, 42, 10.1016/j.sedgeo.2012.02.003
Luo, 2010, Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction, Earth Planet. Sci. Lett., 300, 101, 10.1016/j.epsl.2010.09.041
Luo, 2021, Microbially induced carbonate precipitation in a Middle Triassic microbial mat deposit from southwestern China: new implications for the formational process of micrite, J. Earth Sci., 32, 633, 10.1007/s12583-020-1075-6
Martindale, 2019, The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event, Palaeogeogr. Palaeoclimatol. Palaeoecol., 513, 100, 10.1016/j.palaeo.2017.08.014
Massari, 1997, The infill of a supradetachment (?) basin: the continental to shallow-marine Upper Permian succession in the Dolomites and Carnia (Italy), Sediment. Geol., 110, 181, 10.1016/S0037-0738(96)00084-X
Medici, 2021, Zooming in REE and other trace elements on conodonts: does taxonomy guide diagenesis?, J. Earth Sci., 32, 501, 10.1007/s12583-020-1094-3
Michard, 1983, Rare-earth elements and uranium in high-temperature solutions from East Pacific rise hydrothermal vent field (13N), Nature, 303, 795, 10.1038/303795a0
Newton, 2004, Large shifts in the isotopic composition of seawater sulphate across the Permo–Triassic boundary in northern Italy, Earth Planet. Sci. Lett., 218, 331, 10.1016/S0012-821X(03)00676-9
Nielsen, 1997, Spheroidal dolomites in a Visean karst system–bacterial Induced origin?, Sedimentology, 44, 177, 10.1111/j.1365-3091.1997.tb00431.x
Noé, 1987, Facies and paleogeography of the marine Upper Permian and of the Permian-Triassic boundary in the Southern Alps (Bellerophon Formation, Tesero Horizon), Facies, 16, 89, 10.1007/BF02536749
Nothdurft, 2004, Rare earth element geochemistry of late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones, Geochim. Cosmochim. Acta, 68, 263, 10.1016/S0016-7037(03)00422-8
Obst, 2009, Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: a STXM study of the influence of EPS on the nucleation process, Geochim. Cosmochim. Acta, 73, 4180, 10.1016/j.gca.2009.04.013
Olivier, 2006, Rare earth and trace elements of microbialites in Upper Jurassic coral-and sponge-microbialite reefs, Chem. Geol., 230, 105, 10.1016/j.chemgeo.2005.12.002
Orchard, 1994, 17, 823
Pei, 2020, Sedimentary factories and ecosystem change across the Permian–Triassic Critical Interval (P–TrCI): Insights from the Xiakou area (South China), PalZ, 1
Pei, 2021, Late Anisian microbe-metazoan build-ups (’stromatolites’) in the Germanic Basin—aftermath of the Permian—Triassic Crisis, Lethaia, 54, 823, 10.1111/let.12442
Perri, 2007, Bacterial fossils and microbial dolomite in Triassic stromatolites, Geology, 35, 207, 10.1130/G23354A.1
Pomar, 2008, Carbonate factories: a conundrum in sedimentary geology, Earth Sci. Rev., 87, 134, 10.1016/j.earscirev.2007.12.002
Pruss, 2004, Proliferation of Early Triassic wrinkle structures: implications for environmental stress following the end-Permian mass extinction, Geology, 32, 461, 10.1130/G20354.1
Pruss, 2006, A global marine sedimentary response to the end-Permian mass extinction: examples from southern Turkey and the western United States, Earth Sci. Rev., 78, 193, 10.1016/j.earscirev.2006.05.002
Qiu, 2013, Geochemistry of the Middle to late Permian limestones from the marginal zone of an isolated platform (Laibin, South China), Sci. China Earth Sci., 56, 1688, 10.1007/s11430-013-4620-7
Rothman, 2014, Methanogenic burst in the end-Permian carbon cycle, Proc. Natl. Acad. Sci., 111, 5462, 10.1073/pnas.1318106111
Sakagami, 2006, Late Paleozoic and Triassic bryozoans from the Tethys Himalaya (N India, Nepal and S Tibet), Facies, 52, 279, 10.1007/s10347-005-0043-z
Sánchez-Román, 2009, Presence of sulfate does not inhibit low-temperature dolomite precipitation, Earth Planet. Sci. Lett., 285, 131, 10.1016/j.epsl.2009.06.003
Schlager, 2003, Benthic carbonate factories of the Phanerozoic, Int. J. Earth Sci., 92, 445, 10.1007/s00531-003-0327-x
Schopf, 2015, Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution’s null hypothesis, Proc. Natl. Acad. Sci., 112, 2087, 10.1073/pnas.1419241112
Shen, 2003, Lopingian (late Permian) brachiopods from the Qubuerga Formation at the Qubu section in the Mt. Qomolangma region, southern Tibet (Xizang), China, Palaeontographica Abteilung A-Palaozoologie-Stratigraphie, 268, 49, 10.1127/pala/268/2003/49
Shen, 2006, End-Permian mass extinction pattern in the northern peri-Gondwanan region, Palaeoworld, 15, 3, 10.1016/j.palwor.2006.03.005
Shen, 2011, Calibrating the end-Permian mass extinction, Science, 334, 1367, 10.1126/science.1213454
Shen, 2015, Marine productivity changes during the end-Permian crisis and early Triassic recovery, Earth Sci. Rev., 149, 136, 10.1016/j.earscirev.2014.11.002
Song, 2012, Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery, Earth Planet. Sci. Lett., 353–354, 12, 10.1016/j.epsl.2012.07.005
Song, 2013, Two pulses of extinction during the Permian–Triassic crisis, Nat. Geosci., 6, 52, 10.1038/ngeo1649
Song, 2014, Early Triassic seawater sulfate drawdown, Geochim. Cosmochim. Acta, 128, 95, 10.1016/j.gca.2013.12.009
Song, 2021, Conodont calcium isotopic evidence for multiple shelf acidification events during the early Triassic, Chem. Geol., 562, 10.1016/j.chemgeo.2020.120038
Stanley, 2016, Estimates of the magnitudes of major marine mass extinctions in earth history, Proc. Natl. Acad. Sci., 113, E6325, 10.1073/pnas.1613094113
Sun, 2012, Conodont biostratigraphy and evolution across Permian-Triassic boundary at Yangou Section, Leping, Jiangxi Province, South China, J. Earth Sci., 23, 311, 10.1007/s12583-012-0255-4
Sun, 2021, Methanogen microfossils and methanogenesis in Permian lake deposits, Geology, 49, 13, 10.1130/G47857.1
Tian, 2014, The microfacies and sedimentary responses to the mass extinction during the Permian-Triassic transition at Yangou Section, Jiangxi Province, South China, Sci. China Earth Sci., 57, 2195, 10.1007/s11430-014-4869-5
Tian, 2018, Environmental instability prior to end-Permian mass extinction reflected in biotic and facies changes on shallow carbonate platforms of the Nanpanjiang Basin (South China), Palaeogeogr. Palaeoclimatol. Palaeoecol., 519, 23, 10.1016/j.palaeo.2018.05.011
Trower, 2022, Marine ooid sizes record phanerozoic seawater carbonate chemistry, Geophys. Res. Lett., 49, 1, 10.1029/2022GL100800
Van Lith, 2003, Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation, Sedimentology, 50, 237, 10.1046/j.1365-3091.2003.00550.x
Vasconcelos, 1995, Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures, Nature, 377, 220, 10.1038/377220a0
Verard, 2019, Panalesis: towards global synthetic palaeogeographies using integration and coupling of manifold models, Geol. Mag., 156, 320, 10.1017/S0016756817001042
Visscher, 1998, Formation of lithified micritic laminae in modern marine stromatolites (Bahamas); the role of sulfur cycling, Am. Mineral., 83, 1482, 10.2138/am-1998-11-1236
Wang, 2000, Permian palaeogeographic evolution of the Jiangnan Basin, South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 160, 35, 10.1016/S0031-0182(00)00043-2
Wang, 2005, Calcimicrobialite after end-Permian mass extinction in South China and its palaeoenvironmental significance, Sci. Bull., 50, 665, 10.1360/982004-323
Wang, 2017, New Permian-Triassic conodont data from Selong (Tibet) and the youngest occurrence of Vjalovognathus, J. Asian Earth Sci., 146, 152, 10.1016/j.jseaes.2017.05.014
Wang, 2019, The evolution of microbialite forms during the early Triassic transgression: a case study in Chongyang of Hubei Province, South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 519, 209, 10.1016/j.palaeo.2018.01.043
Wang, 2022, A new early Triassic brachiopod fauna from southern Tibet, China: implications on brachiopod recovery and the late Smithian extinction in southern Tethys, J. Paleontol., 96, 1, 10.1017/jpa.2021.119
Warthmann, 2000, Bacterially induced dolomite precipitaion in anoxic culture experiments, Geology, 28, 1091, 10.1130/0091-7613(2000)28<1091:BIDPIA>2.0.CO;2
Weidlich, 1995, Upper Permian (Murghabian) rugose corals from Oman (Ba’id Area, Saih Hatat): community structure and contributions to reefbuilding processes, Facies, 33, 229, 10.1007/BF02537454
Wignall, 2003, Contrasting deep-Water records from the Upper Permian and lower Triassic of South Tibet and British Columbia: evidence for a diachronous mass extinction, Palaios, 18, 153, 10.1669/0883-1351(2003)18<153:CDRFTU>2.0.CO;2
Wignall, 1999, Unusual intraclastic limestones in lower Triassic carbonates and their bearing on the aftermath of the end-Permian mass extinction, Sedimentology, 46, 303, 10.1046/j.1365-3091.1999.00214.x
Wignall, 2002, Extent, duration, and nature of the Permian-Triassic superanoxic event, Geol. Soc. Am. Spec. Pap., 356, 395
Wignall, 1995, Palaeoenvironmental changes across the Permian/Triassic boundary at Shangsi (N. Sichuan, China), Hist. Biol., 10, 175, 10.1080/10292389509380519
Woods, 2014, Assessing early Triassic paleoceanographic conditions via unusual sedimentary fabrics and features, Earth Sci. Rev., 137, 6, 10.1016/j.earscirev.2013.08.015
Woods, 2008, Anachronistic facies from a drowned lower Triassic carbonate platform: lower member of the Alwa Formation (Ba’id Exotic), Oman Mountains, Sediment. Geol., 209, 1, 10.1016/j.sedgeo.2008.06.002
Woods, 1999, Lower Triassic large sea-floor carbonate cements: their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction, Geology, 27, 645, 10.1130/0091-7613(1999)027<0645:LTLSFC>2.3.CO;2
Woods, 2007, Calcium carbonate seafloor precipitates from the outer shelf to slope facies of the lower Triassic (Smithian-Spathian) union Wash Formation, California, USA: Sedimentology and palaeobiologic significance, Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 281, 10.1016/j.palaeo.2006.11.053
Wright, 2005, Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: significance and implications, Sedimentology, 52, 987, 10.1111/j.1365-3091.2005.00732.x
Wu, 1996, Trace element geochemistry of the Permian/Triassic boundary section in the Selong-Xishan area, Nyalam County, southern Tibet, China, Chin. J. Geochem., 15, 72, 10.1007/BF03166798
Wu, 2022, Benthic Pleurocapsales (Cyanobacteria) blooms catalyzing carbonate precipitation and dolomitization following the end-permian mass extinction, Geophys. Res. Lett., 49, 10.1029/2022GL100819
Xiang, 2016, Oceanic redox evolution across the end-Permian mass extinction at Shangsi, South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 448, 59, 10.1016/j.palaeo.2015.10.046
Xiang, 2020, Oceanic redox evolution around the end-Permian mass extinction at Meishan, South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 544, 10.1016/j.palaeo.2020.109626
Xie, 2005, Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction, Nature, 434, 494, 10.1038/nature03396
Xie, 2010, Cyanobacterial blooms tied to volcanism during the 5 m.y Permo-Triassic biotic crisis, Geology, 38, 447, 10.1130/G30769.1
Yang, 2011, Composition and structure of microbialite ecosystems following the end-Permian mass extinction in South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 111, 10.1016/j.palaeo.2010.05.029
Yang, 2019, Small microbialites from the basal Triassic mudstone (Tieshikou, Jiangxi, South China): Geobiologic features, biogenicity, and paleoenvironmental implications, Palaeogeogr. Palaeoclimatol. Palaeoecol., 519, 221, 10.1016/j.palaeo.2018.06.030
Yang, 2023, Foraminiferal extinction and size reduction during the Permian-Triassic transition in southern Tibet, J. Earth Sci.
Yin, 2001, The global stratotype section and point (GSSP) of the Permian-Triassic boundary, Epis. J. Int. Geosci., 24, 102
Yin, 2012, Two episodes of environmental change at the Permian–Triassic boundary of the GSSP section Meishan, Earth Sci. Rev., 115, 163, 10.1016/j.earscirev.2012.08.006
Yuan, 2018, Conodont succession and reassessment of major events around the Permian-Triassic boundary at the Selong Xishan section, southern Tibet, China, Glob. Planet. Chang., 161, 194, 10.1016/j.gloplacha.2017.12.024
Yuan, 2019, Integrative timescale for the Lopingian (late Permian): a review and update from Shangsi, South China, Earth Sci. Rev., 188, 190, 10.1016/j.earscirev.2018.11.002
Zhang, 2017, Griesbachian and Dienerian (early Triassic) ammonoids from Qubu in the Mt. Everest area, southern Tibet, Palaeoworld, 26, 650, 10.1016/j.palwor.2017.04.003
Zhang, 2017, Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed early Triassic biotic recovery, Proc. Natl. Acad. Sci., 114, 1806, 10.1073/pnas.1610931114
Zhang, 2017, Study of the microbialite from Permian-Triassic boundary in Chaohu, Anhui Province, J. Hefei Univ. Technol., 40, 822
Zhang, 2018, Congruent Permian-Triassic δ238U records at Panthalassic and Tethyan sites: Confirmation of global-oceanic anoxia and validation of the U-isotope paleoredox proxy, Geology, 46, 327, 10.1130/G39695.1
Zhao, 2009, Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China, Chem. Geol., 265, 345, 10.1016/j.chemgeo.2009.04.015
Zhao, 2013, Uppermost Permian to lower Triassic conodont zonation from three gorges area, South China, Palaios, 28, 523, 10.2110/palo.2012.p12-107r
Zhao, 2015, Early Triassic trace fossils from the Three Gorges area of South China: Implications for the recovery of benthic ecosystems following the Permian–Triassic extinction, Palaeogeogr. Palaeoclimatol. Palaeoecol., 429, 100, 10.1016/j.palaeo.2015.04.008
Zheng, 2013, Sedimentary features of the Permian-Triassic boundary sequence of the Meishan section in Changxing County, Zhejiang Province, Sci. China Earth Sci., 56, 956, 10.1007/s11430-013-4602-9
Zheng, 2022, Microfossil assemblages and indication of the source and preservation pattern of organic matter from the early Cambrian in South China, J. Earth Sci., 33, 802, 10.1007/s12583-020-1117-0
Zhou, 2017, Expansion of photic-zone euxinia during the Permian–Triassic biotic crisis and its causes: Microbial biomarker records, Palaeogeogr. Palaeoclimatol. Palaeoecol., 474, 140, 10.1016/j.palaeo.2016.06.027