Expanding the horizons for structural analysis of fully protonated protein assemblies by NMR spectroscopy at MAS frequencies above 100 kHz

Solid State Nuclear Magnetic Resonance - Tập 87 - Trang 117-125 - 2017
Jochem Struppe1, Caitlin M. Quinn2,3, Manman Lu2,3, Mingzhang Wang2,3, Guangjin Hou2,3, Xingyu Lu2,3, Jodi Kraus2,3, Loren B. Andreas4, Jan Stanek4, Daniela Lalli4, Anne Lesage4, Guido Pintacuda4, Werner Maas1, Angela M. Gronenborn5,3, Tatyana Polenova2,3
1Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
2Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
3Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
4Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon, 5 rue de la Doua, 69100, Villeurbanne, Lyon, France
5Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, United States

Tài liệu tham khảo

Andrew, 1958, Nuclear magnetic resonance spectra from a crystal rotated at high speed, Nature, 182, 10.1038/1821659a0 Andrew, 1959, Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation, Nature, 183, 1802, 10.1038/1831802a0 Lowe, 1959, Free induction decays of rotating solids, Phys. Rev. Lett., 2, 285, 10.1103/PhysRevLett.2.285 Samoson, 2001, High-field high-speed MAS resolution enhancement in 1H NMR spectroscopy of solids, Solid State Nucl. Magn. Reson, 20, 130, 10.1006/snmr.2001.0037 Ernst, 2003, Low-power XiX decoupling in MAS NMR experiments, J. Magn. Reson, 163, 332, 10.1016/S1090-7807(03)00155-1 Zhou, 2008, High-performance solvent suppression for proton detected solid-state NMR, J. Magn. Reson, 192, 167, 10.1016/j.jmr.2008.01.012 Barbet-Massin, 2014, Rapid proton-detected NMR assignment for proteins with fast magic angle spinning, J. Am. Chem. Soc., 136, 12489, 10.1021/ja507382j Marchetti, 2012, Backbone assignment of fully protonated solid proteins by 1H detection and ultrafast magic-angle-spinning NMR spectroscopy, Angew. Chem.-Int. Ed., 51, 10756, 10.1002/anie.201203124 Paulson, 2003, Sensitive high resolution inverse detection NMR spectroscopy of proteins in the solid state, J. Am. Chem. Soc., 125, 15831, 10.1021/ja037315+ Akbey, 2010, Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy, J. Biomol. NMR, 46, 67, 10.1007/s10858-009-9369-0 Chevelkov, 2006, Ultrahigh resolution in proton solid-state NMR spectroscopy at high levels of deuteration, Angew. Chem.-Int. Ed., 45, 3878, 10.1002/anie.200600328 Knight, 2011, Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid-state MAS NMR spectroscopy, Angew. Chem. Int. Ed., 50, 11697, 10.1002/anie.201106340 Knight, 2012, Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR, Proc. Natl. Acad. Sci. U. S. A., 109, 11095, 10.1073/pnas.1204515109 Dannatt, 2016, Weak and transient protein interactions determined by solid-state NMR, Angew. Chem. Int. Ed., 55, 6638, 10.1002/anie.201511609 Saurel, 2017, Local and global dynamics in Klebsiella pneumoniae outer membrane protein a in lipid bilayers probed at atomic resolution, J. Am. Chem. Soc., 139, 1590, 10.1021/jacs.6b11565 Sinnige, 2014, Proton clouds to measure long-range contacts between nonexchangeable side chain protons in solid-state NMR, J. Am. Chem. Soc., 136, 4452, 10.1021/ja412870m Barbet-Massin, 2014, Insights into the structure and dynamics of measles virus nucleocapsids by 1H-detected solid-state NMR, Biophys. J., 107, 941, 10.1016/j.bpj.2014.05.048 Wickramasinghe, 2015, Evolution of CPMAS under fast magic-angle-spinning at 100 kHz and beyond, Solid State Nucl. Magn. Reson, 72, 9, 10.1016/j.ssnmr.2015.10.002 Zhang, 2015, A novel high-resolution and sensitivity-enhanced three-dimensional solid-state NMR experiment under ultrafast magic angle spinning conditions, Sci. Rep., 5, 9 Agarwal, 2013, Amplitude-modulated low-power decoupling sequences for fast magic-angle spinning NMR, Chem. Phys. Lett., 583, 1, 10.1016/j.cplett.2013.07.073 Agarwal, 2014, De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy, Angew. Chem.-Int. Ed., 53, 12253, 10.1002/anie.201405730 Penzel, 2015, Protein resonance assignment at MAS frequencies approaching 100 kHz: a quantitative comparison of J-coupling and dipolar-coupling-based transfer methods, J. Biomol. NMR, 63, 165, 10.1007/s10858-015-9975-y Andreas, 2016, Structure of fully protonated proteins by proton-detected magic-angle spinning NMR, Proc. Natl. Acad. Sci. U. S. A., 113, 9187, 10.1073/pnas.1602248113 Stanek, 2016, NMR spectroscopic assignment of backbone and side-chain protons in fully protonated proteins: microcrystals, sedimented assemblies, and amyloid fibrils, Angew. Chem. Int. Ed., 55, 15504, 10.1002/anie.201607084 Zhao, 2001, Recoupling of heteronuclear dipolar interactions in solid-state NMR using symmetry-based pulse sequences, Chem. Phys. Lett., 342, 353, 10.1016/S0009-2614(01)00593-0 Levitt, 2008, Symmetry in the design of NMR multiple-pulse sequences, J. Chem. Phys., 128, 25 Hou, 2011, H-1-C-13/H-1-N-15 heteronuclear dipolar recoupling by r-symmetry sequences under fast magic angle spinning for dynamics analysis of biological and organic solids, J. Am. Chem. Soc., 133, 18646, 10.1021/ja203771a Hou, 2012, Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy, J. Chem. Phys., 137, 10 Hou, 2013, Multidimensional magic angle spinning NMR spectroscopy for site-resolved measurement of proton chemical shift anisotropy in biological solids, J. Am. Chem. Soc., 135, 1358, 10.1021/ja3084972 Han, 2010, Solid-state NMR studies of HIV-1 capsid protein assemblies, J. Am. Chem. Soc., 132, 1976, 10.1021/ja908687k Han, 2013, Magic angle spinning NMR reveals sequence-dependent structural plasticity, dynamics, and the spacer peptide 1 conformation in HIV-1 capsid protein assemblies, J. Am. Chem. Soc., 135, 17793, 10.1021/ja406907h Beckett, 2012, Field dependence of the relaxation of Br-79 in KBr and its use as a temperature calibrant, J. Magn. Reson, 223, 61, 10.1016/j.jmr.2012.07.007 Hohwy, 2002, Band-selective homonuclear dipolar recoupling in rotating solids, J. Chem. Phys., 117, 4973, 10.1063/1.1488136 Hou, 2014, Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy, J. Chem. Phys., 141, 11 Bak, 2000, SIMPSON: a general simulation program for solid-state NMR spectroscopy, J. Magn. Reson, 147, 296, 10.1006/jmre.2000.2179 Rienstra, 2000, 2D and 3D N-15-C-13-C-13 NMR chemical shift correlation spectroscopy of solids: assignment of MAS spectra of peptides, J. Am. Chem. Soc., 122, 10979, 10.1021/ja001092v Schnell, 2001, High-resolution H-1 NMR spectroscopy in the solid state: very fast sample rotation and multiple-quantum coherences, J. Magn. Reson, 151, 153, 10.1006/jmre.2001.2336 Zhang, 2017, Proton-based ultrafast magic angle spinning solid-state NMR spectroscopy, Accounts Chem. Res., 50, 1105, 10.1021/acs.accounts.7b00082 Briggs, 2004, The stoichiometry of Gag protein in HIV-1, Nat. Struct. Mol. Biol., 11, 672, 10.1038/nsmb785 Sundquist, 2012, HIV-1 assembly, budding, and maturation, Csh Perspect. Med., 2 Zhao, 2013, Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics, Nature, 497, 643, 10.1038/nature12162 Lu, 2015, Dynamic allostery governs cyclophilin A-HIV capsid interplay, Proc. Natl. Acad. Sci. U. S. A., 112, 14617, 10.1073/pnas.1516920112 Perilla, 2017, CryoEM structure refinement by integrating NMR chemical shifts with molecular dynamics simulations, J. Phys. Chem. B, 121, 3853, 10.1021/acs.jpcb.6b13105 Zhang, 2016, HIV-1 capsid function is regulated by dynamics: quantitative. Atomic-resolution insights by integrating magic-angle-spinning NMR, QM/MM, and MD, J. Am. Chem. Soc., 138, 14066, 10.1021/jacs.6b08744 Du, 2011, Structure of the HIV-1 full-length capsid protein in a conformationally trapped unassembled state induced by small-molecule binding, J. Mol. Biol., 406, 371, 10.1016/j.jmb.2010.11.027 Byeon, 2012, Motions on the millisecond time scale and multiple conformations of HIV-1 capsid protein: implications for structural polymorphism of CA assemblies, J. Am. Chem. Soc., 134, 6455, 10.1021/ja300937v Bayro, 2014, Site-specific structural variations accompanying tubular assembly of the HIV-1 capsid protein, J. Mol. Biol., 426, 1109, 10.1016/j.jmb.2013.12.021 Lu, 2016, Improving dipolar recoupling for site-specific structural and dynamics studies in biosolids NMR: windowed RN-symmetry sequences, Phys. Chem. Chem. Phys., 18, 4035, 10.1039/C5CP07818K Hou, 2014, A magic-angle spinning NMR method for the site-specific measurement of proton chemical-shift anisotropy in biological and organic solids, Israel J. Chem., 54, 171, 10.1002/ijch.201300099 Miah, 2013, Measuring proton shift tensors with ultrafast MAS NMR, J. Magn. Reson, 235, 1, 10.1016/j.jmr.2013.07.005