Exopolysaccharides from microalgae: production, characterization, optimization and techno-economic assessment

Brazilian Journal of Microbiology - Tập 52 Số 4 - Trang 1779-1790 - 2021
Anıl Tevfik Koçer1, Benan İnan1, Sedef Kaptan Usul2, Didem Özçimen1, Mustafa Tahsin Yılmaz3, İbrahim Işıldak1
1Department of Bioengineering, Yildiz Technical University, İstanbul, Turkey
2Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
3Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ruas-Madiedo P, Hugenholtz J, Zoon P (2002) An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J 12(2–3):163–171. https://doi.org/10.1016/S0958-6946(01)00160-1

Kumar Singha T (2012) Microbial extracellular polymeric substances: production, ısolation and applications. IOSR J Pharm 2:276–281. https://doi.org/10.9790/3013-0220276281

Lee IY, Seo WT, Kim GJ et al (1997) Optimization of fermentation conditions for production of exopolysaccharide by Bacillus polymyxa. Bioprocess Eng 16:71–75. https://doi.org/10.1007/s004490050290

Mahapatra S, Banerjee D (2013) Fungal exopolysaccharide: production, composition and applications. Microbiol Insights 6:1–16.  https://doi.org/10.4137/mbi.s10957

Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 34:1225–1244. https://doi.org/10.1016/j.biotechadv.2016.08.004

Özçimen D, İnan B, Koçer AT, Vehapi M (2018) Bioeconomic assessment of microalgal production. In: Jacob-Lopes E (ed) Microalgal Biotechnology. InTech, Rijeka, Croatia, pp 195–213. https://doi.org/10.5772/intechopen.73702

Singh NK, Dhar DW (2011) Microalgae as second generation biofuel. A review Agron Sustain Dev 31:605–629. https://doi.org/10.1007/s13593-011-0018-0

Karakaş CY, Şahin HT, İnan B, et al (2019) In-vitro cytotoxic activity of microalgal extracts loaded nano-micro particles produced via electrospraying and microemulsion methods. Biotechnol Prog 35(6):1–8. https://doi.org/10.1002/btpr.2876

Geun Goo B, Baek G, Jin Choi D et al (2013) Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresour Technol 129:343–350. https://doi.org/10.1016/j.biortech.2012.11.077

Frengova GI, Simova ED, Beshkova DM, Simov ZI (2002) Exopolysaccharides produced by lactic acid bacteria of kefir grains. Zeitschrift fur Naturforsch - Sect C J Biosci 57:805–810. https://doi.org/10.1515/znc-2002-9-1009

Tsuda H, Hara K, Miyamoto T (2008) Binding of mutagens to exopolysaccharide produced by Lactobacillus plantarum mutant strain 301102S. J Dairy Sci 91:2960–2966. https://doi.org/10.3168/jds.2007-0538

Li M, Zhu W, Gao L, Lu L (2013) Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. J Appl Phycol 25:1023–1030. https://doi.org/10.1007/s10811-012-9937-7

Bafana A (2013) Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii. Carbohydr Polym 95:746–752. https://doi.org/10.1016/j.carbpol.2013.02.016

Gaignard C, Macao V, Gardarin C et al (2018) The red microalga Flintiella sanguinaria as a new exopolysaccharide producer. J Appl Phycol 30:2803–2814. https://doi.org/10.1007/s10811-018-1389-2

Halaj M, Paulovičová E, Paulovičová L et al (2019) Extracellular biopolymers produced by Dictyosphaerium family - chemical and immunomodulative properties. Int J Biol Macromol 121:1254–1263. https://doi.org/10.1016/j.ijbiomac.2018.10.116

DeSantis D, Mason JA, James BD et al (2017) Techno-economic analysis of metal-organic frameworks for hydrogen and natural gas storage. Energy Fuels 31:2024–2032. https://doi.org/10.1021/acs.energyfuels.6b02510

Thomassen G, Egiguren Vila U, Van Dael M et al (2016) A techno-economic assessment of an algal-based biorefinery. Clean Technol Environ Policy 18:1849–1862. https://doi.org/10.1007/s10098-016-1159-2

Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531. https://doi.org/10.1016/j.apenergy.2011.04.018

Hoffman J, Pate RC, Drennen T, Quinn JC (2017) Techno-economic assessment of open microalgae production systems. Algal Res 23:51–57. https://doi.org/10.1016/j.algal.2017.01.005

Juneja A, Murthy GS (2017) Evaluating the potential of renewable diesel production from algae cultured on wastewater: Techno-economic analysis and life cycle assessment. AIMS Energy 5:239–257. https://doi.org/10.3934/energy.2017.2.239

Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102:1149–1158. https://doi.org/10.1016/j.biortech.2010.09.017

Hanrahan G, Lu K (2006) Application of factorial and response surface methodology in modern experimental design and optimization. Crit Rev Anal Chem 36:141–151. https://doi.org/10.1080/10408340600969478

Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205. https://doi.org/10.1128/mmbr.35.2.171-205.1971

Díaz Bayona KC, Garcés LA (2014) Effect of different media on exopolysaccharide and biomass production by the green microalga Botryococcus braunii. J Appl Phycol 26:2087–2095. https://doi.org/10.1007/s10811-014-0242-5

Wang L, Min M, Li Y et al (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186. https://doi.org/10.1007/s12010-009-8866-7

Zhang J, Liu L, Chen F (2019) Production and characterization of exopolysaccharides from Chlorella zofingiensis and Chlorella vulgaris with anti-colorectal cancer activity. Int J Biol Macromol 134:976–983. https://doi.org/10.1016/j.ijbiomac.2019.05.117

Do BC, Dang TT, Berrin JG et al (2009) Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-beta-mannosidase from Aspergillus niger BK01. Microb Cell Fact 8:59. https://doi.org/10.1021/ac60111a017

Hempel N, Petrick I, Behrendt F (2012) Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production. J Appl Phycol 24:1407–1418. https://doi.org/10.1007/s10811-012-9795-3

García R, Pizarro C, Lavín AG, Bueno JL (2013) Biomass proximate analysis using thermogravimetry. Bioresour Technol. https://doi.org/10.1016/j.biortech.2013.03.197

Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin. J Biol Chem. https://doi.org/10.1016/0304-3894(92)87011-4

Zheng JQ, Wang JZ, Shi CW et al (2014) Characterization and antioxidant activity for exopolysaccharide from submerged culture of Boletus aereus. Process Biochem 49:1047–1053. https://doi.org/10.1016/j.procbio.2014.03.009

Bramhachari PV, Dubey SK (2006) Isolation and characterization of exopolysaccharide produced by Vibrio harveyi strain VB23. Lett Appl Microbiol 43:571–577. https://doi.org/10.1111/j.1472-765X.2006.01967.x

Sert BS, Inan B, Özçimen D (2018) Effect of chemical pre-treatments on bioethanol production from Chlorella minutissima. Acta Chim Slov 65(1):160–165. https://doi.org/10.17344/acsi.2017.3728

Freitas BCB, Morais MG, Costa JAV (2017) Chlorella minutissima cultivation with CO2 and pentoses: effects on kinetic and nutritional parameters. Bioresour Technol 244:338–344. https://doi.org/10.1016/j.biortech.2017.07.125

Milledge JJ, Heaven S (2011) Disc stack centrifugation separation and cell disruption of microalgae: a technical note. Environ Nat Resour Res. https://doi.org/10.5539/enrr.v1n1p17

Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

Choi HJ, Yu SW (2015) Influence of crude glycerol on the biomass and lipid content of microalgae. Biotechnol Biotechnol Equip 29:506–513. https://doi.org/10.1080/13102818.2015.1013988

Yang JS, Rasa E, Tantayotai P et al (2011) Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresour Technol 102:3077–3082. https://doi.org/10.1016/j.biortech.2010.10.049

Kim S, Park J, eun, Cho YB, Hwang SJ, (2013) Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour Technol 144:8–13. https://doi.org/10.1016/j.biortech.2013.06.068

Kumar K, Dasgupta CN, Das D (2014) Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresour Technol 167:358–366. https://doi.org/10.1016/j.biortech.2014.05.118

Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047

Yim JH, Kim SJ, Ahn SH, Lee HK (2003) Optimal conditions for the production of sulfated polysaccharide by marine microalga Gyrodinium impudicum strain KG03. Biomol. Eng 20(4–6):273–280. https://doi.org/10.1016/S1389-0344(03)00070-4

Raposo MFDJ, De Morais AMMB, De Morais RMSC (2014) Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci 101:56–63. https://doi.org/10.1016/j.lfs.2014.02.013

Miqueleto AP, Dolosic CC, Pozzi E et al (2010) Influence of carbon sources and C/N ratio on EPS production in anaerobic sequencing batch biofilm reactors for wastewater treatment. Bioresour Technol 101:1324–1330. https://doi.org/10.1016/j.biortech.2009.09.026

Maalej H, Hmidet N, Boisset C et al (2015) Optimization of exopolysaccharide production from Pseudomonas stutzeri AS22 and examination of its metal-binding abilities. J Appl Microbiol 118:356–367. https://doi.org/10.1111/jam.12688

Yeh KL, Chang JS, Chen WM (2010) Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Eng Life Sci 10:201–208. https://doi.org/10.1002/elsc.200900116

Grosu-Tudor SS, Zamfir M (2014) Exopolysaccharide production by selected lactic acid bacteria isolated from fermented vegetables. Sci Bull Ser F Biotechnol 18:107–114

Dineshkumar R, Kumaravel R, Gopalsamy J et al (2018) Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste and Biomass Valorization 9:793–800. https://doi.org/10.1007/s12649-017-9873-5

Servel MO, Claire C, Derrien A et al (1994) Fatty acid composition of some marine microalgae. Phytochemistry 36:691–693. https://doi.org/10.1016/S0031-9422(00)89798-8

Koçer AT, Mutlu B, Özçimen D (2019) Investigation of biochar production potential and pyrolysis kinetics characteristics of microalgal biomass. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00411-7

Caporgno MP, Trobajo R, Caiola N et al (2015) Biogas production from sewage sludge and microalgae co-digestion under mesophilic and thermophilic conditions. Renew Energy 75:374–380. https://doi.org/10.1016/j.renene.2014.10.019

Liang K, Zhang Q, Gu M, Cong W (2013) Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J Appl Phycol 25:311–318. https://doi.org/10.1007/s10811-012-9865-6

Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

Ruangsomboon S (2012) Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresour Technol 109:261–265. https://doi.org/10.1016/j.biortech.2011.07.025

Molino A, Iovine A, Casella P et al (2018) Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals. Int J Environ Res Public Health 15:1–21. https://doi.org/10.3390/ijerph15112436

Agrawal A, Chakraborty S (2013) A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresour Technol 128:72–80. https://doi.org/10.1016/j.biortech.2012.10.043

Miao X, Wu Q, Yang C (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis 71:855–863. https://doi.org/10.1016/j.jaap.2003.11.004

Kent M, Welladsen HM, Mangott A, Li Y (2015) Nutritional evaluation of Australian microalgae as potential human health supplements. PLoSONE 10(2):1–14. https://doi.org/10.1371/journal.pone.0118985

Arbeláez AA, Giraldo ND, Pérez JF, Atehortúa L (2019) Pyrolysis kinetics using TGA and simulation of gasification of the microalga Botryococcus braunii. Bioenergy Res 12:1077–1089. https://doi.org/10.1007/s12155-019-10037-2

Koçer AT, Özçimen D (2018) Investigation of the biogas production potential from algal wastes. Waste Manag Res 36:1100–1105. https://doi.org/10.1177/0734242X18798447

Karakaş C, Özçimen D, İnan B (2017) Potential use of olive stone biochar as a hydroponic growing medium. J Anal Appl Pyrolysis 125:17–23. https://doi.org/10.1016/j.jaap.2017.05.005

Koçer AT, Özçimen D (2021) Determination of combustion characteristics and kinetic parameters of Ulva lactuca and its biochar. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-01245-4

Wang B (2011) Chemical characterization and ameliorating effect of polysaccharide from Chinese jujube on intestine oxidative injury by ischemia and reperfusion. Int J Biol Macromol 48:386–391. https://doi.org/10.1016/j.ijbiomac.2010.12.005

Dertli E, Toker OS, Durak MZ et al (2016) Development of a fermented ice-cream as influenced by in situ exopolysaccharide production: rheological, molecular, microstructural and sensory characterization. Carbohydr Polym 136:427–440. https://doi.org/10.1016/j.carbpol.2015.08.047

Sekkal M, Huvenne JP, Legrand P et al (1993) Direct structural identification of polysaccharides from red algae by FTIR microspectrometry I: localization of agar in Gracilaria verrucosa sections. Mikrochim Acta 112:1–10. https://doi.org/10.1007/BF01243315

Kumar CG, Joo HS, Choi JW et al (2004) Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme Microb Technol 34:673–681. https://doi.org/10.1016/j.enzmictec.2004.03.001

Solmaz KB, Ozcan Y, Dogan NM et al (2018) Characterization and production of extracellular polysaccharides (EPS) by Bacillus pseudomycoides U10. Environ - MDPI 5:1–16. https://doi.org/10.3390/environments5060063

Ismail B, Nampoothiri KM (2010) Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch Microbiol 192:1049–1057. https://doi.org/10.1007/s00203-010-0636-y

Ahmed Z, Wang Y, Anjum N et al (2013) Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir - part II. Food Hydrocoll 30:343–350. https://doi.org/10.1016/j.foodhyd.2012.06.009

Botelho PS, Maciel MIS, Bueno LA et al (2014) Characterisation of a new exopolysaccharide obtained from of fermented kefir grains in soymilk. Carbohydr Polym 107:1–6. https://doi.org/10.1016/j.carbpol.2014.02.036

García-Cubero R, Cabanelas ITD, Sijtsma L et al (2018) Production of exopolysaccharide by Botryococcus braunii CCALA 778 under laboratory simulated Mediterranean climate conditions. Algal Res 29:330–336. https://doi.org/10.1016/j.algal.2017.12.003

Vanhooren PT, Vandamme EJ (1999) L-Fucose: occurrence, physiological role, chemical, enzymatic and microbial synthesis. J Chem Technol Biotechnol 74:479–497. https://doi.org/10.1002/(SICI)1097-4660(199906)74:6%3c479::AID-JCTB76%3e3.0.CO;2-E

Ragavan ML, Das N (2019) Optimization of exopolysaccharide production by probiotic yeast Lipomyces starkeyi VIT-MN03 using response surface methodology and its applications. Ann Microbiol 69:515–530. https://doi.org/10.1007/s13213-019-1440-9

Hu X, Shi Y, Zhang P et al (2016) d-Mannose: properties, production, and applications: an overview. Compr Rev Food Sci Food Saf 15:773–785. https://doi.org/10.1111/1541-4337.12211

Pierre G, Delattre C, Dubessay P et al (2019) What is in store for EPS microalgae in the next decade? Molecules 24:1–25. https://doi.org/10.3390/molecules24234296

Quinn JC, Davis R (2015) The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol 184:444–452. https://doi.org/10.1016/j.biortech.2014.10.075

Amer L, Adhikari B, Pellegrino J (2011) Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresour Technol 102:9350–9359. https://doi.org/10.1016/j.biortech.2011.08.010