Ứng dụng axit salicylic ngoại sinh chống lại các tác động ức chế nguyên phân và gây đứt gãy nhiễm sắc thể do stress muối ở các meristem ngọn lúa mạch

Biologia - Tập 76 - Trang 341-350 - 2020
Selma Tabur1, Zeynep D. Avci1, Serkan Özmen1
1Department of Biology, Faculty of Arts and Science, Süleyman Demirel University, Isparta, Turkey

Tóm tắt

Mục tiêu sinh học tế bào của nghiên cứu này là giải thích một cách chi tiết hiệu quả của axit salicylic (SA) đối với độc tính tế bào và độc tính di truyền do stress muối gây ra ở các meristem ngọn lúa mạch. Phân tích thống kê các kết quả thu được chỉ ra rằng stress muối gây ra sự giảm đáng kể chỉ số nguyên phân của hạt lúa mạch tùy thuộc vào việc tăng nồng độ, trong khi tần suất bất thường nhiễm sắc thể tăng lên. Tương tự, giá trị chỉ số nguyên phân cũng đã giảm khi chỉ điều trị bằng SA và các bất thường nhiễm sắc thể cũng gia tăng. Tuy nhiên, trong trường hợp áp dụng đồng thời SA và các nồng độ muối khác nhau, nồng độ muối cao nhất cho thấy sự thành công vượt trội so với các nồng độ muối thấp trong việc giảm bớt tác động ức chế nguyên phân của stress muối thông qua việc tăng chỉ số nguyên phân lên khoảng gấp đôi. Trong khi đó, các mức độ muối thấp trong ứng dụng này có tác động tích cực hơn so với các mức độ muối cao trong việc giảm bớt tác động gây đứt gãy nhiễm sắc thể của stress muối đối với cấu trúc và hành vi của nhiễm sắc thể. Do đó, các kết quả cho thấy vai trò bảo vệ của SA đối với các tác động độc tế bào của stress muối là hiệu quả hơn ở nồng độ muối thấp.

Từ khóa

#axit salicylic #stress muối #độc tính tế bào #độc tính di truyền #lúa mạch

Tài liệu tham khảo

Ahmad P, Prasad MNV (2012) Environmental adaptations and Stres tolerance in plants in the era of climate change. Springer Science Business Media, LLC, New York. https://doi.org/10.1007/978-1-4614-0815-4 Al-Hakimi AMA (2001) Alleviation of the adverse effects of NaCI on gas exchange and growth of wheat plants by ascorbic acid, thiamine and sodium salicylate. Pak J Biol Sci 4:762–765. https://doi.org/10.3923/pjbs.2001.762.765 Al-Karaki GN (2001) Germination, sodium and potassium concentration of barley seeds as influenced by salinity. J Plant Nutr 24:511–522. https://doi.org/10.1081/PLN-100104976 Ananieva EA, Alexieva VS, Popova LP (2002) Treatment with salicylic acid decreases the effects of paraquat on photosynthesis. J Plant Physiol 159:685–693. https://doi.org/10.1078/0176-1617-0706 Ashraf MY, Sarwar G, Ashraf M, Afaf R, Sattar A (2002) Salinity induced changes in a amylase activity during germination and early cotton seedling growth. Biol Plant 45:589–591. https://doi.org/10.1023/A:1022338900818 Asita AO, Mokhobo MM (2013) Clastogenic and cytotoxic effects of four pesticides used to control insect pests of stored products on root meristems of Allium cepa. Environ Nat Resour Res 3(2):133–145. https://doi.org/10.5539/enrr.v3n2p133 Aydın B, Nalbantoğlu B (2011) Effectsof cold and salicylic acid treatments on nitrate reductase activity in spinach leaves. Turk J Biol 35:443–448. https://doi.org/10.3906/biy-1004-106 Briand CH, Kapoor BM (1989) The cytogenetic effects of sodium salicylate on the root meristem cells of Allium sativum L. Cytologia 54:203–209. https://doi.org/10.1508/cytologia.54.203 Çavuşoğlu K, Kaya A, Yılmaz F, Yalçın E (2012) Effects of cypermethrin on Allium cepa. Environ Toxicol 27:583–589. https://doi.org/10.1002/tox.20681 Çavuşoğlu K, Tepe B, Kılıç S (2014) Effects of salicyclic acid pretreatment on the seed germination, seedling growth and leaf anatomy of barley under saline conditions. Cereal Res Commun 42(2):229–238. https://doi.org/10.1556/CRC.2013.0049 Çavuşoğlu D, Tabur S, Çavuşoğlu K (2016a) The effects of Aloe vera L. leaf extract on some physiological and cytogenetical parameters in Allium cepa L. seeds germinated under salt stress. Cytologia 81(1):103–110. https://doi.org/10.1508/cytologia.81.103 Çavuşoğlu D, Tabur S, Çavuşoğlu K (2016b) Role of Ginkgo biloba L. leaf extract on some physiological and cytogenetical parameters in Allium cepa L. seeds exposed to salt stress. Cytologia 81(2):207–213. https://doi.org/10.1508/cytologia.81.207 Cesur A, Tabur S (2011) Chromotoxic effects of exogenous hydrogen peroxide (H2O2) in barley seeds exposed to salt stress. Acta Physiol Plant 33:707–709. https://doi.org/10.1007/s11738-010-0594-7 Dajic Z (2006) Salt stress. In: Rao KVM, Raghavendra AS, Reddy KJ (eds.), Physiology and molecular biology of stress tolerance in plants. ISBN-13 978-1-4020-4224-9, Dordrecht, the Netherlands, pp 41-99 https://doi.org/10.1007/1-4020-4225-6 Dat JF, Foyer CH, Scoot IM (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118(4):1455–1461. https://doi.org/10.1104/pp.118.4.1455 Duan J, Li J, Guo S, Kang Y (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J Plant Physiol 165:1620–1635. https://doi.org/10.1016/j.jplph.2007.11.006 Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42. https://doi.org/10.2307/3001478 El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45(3):215–224. https://doi.org/10.1007/s10725-005-4928-1 FAO (2016) FAOSTAT. Food and Agriculture Organization of the United Nations, Rome, Italy. Web. http://faostat.fao.org/default.aspx. Accessed: 12 February 2019 Farheen J, Mansoor S, Abideen Z (2018) Exogenously applied salicylic acid improved growth, photosynthetic pigments and oxidative stability in mungbean seedlings (Vigna radiata) at salt stress. Pak J Bot 50:901–912 Fiskesjö G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102:99–112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x Fiskesjö G (1997) Allium test for screening chemicals; evaluation of cytological parameters. In: Wang W, Lower WR, Gorsuch JW, Hughes JS (eds) Plant for Environmental Studies. Lewis Publishers, New York, pp 308–333. https://doi.org/10.1201/9781420048711.ch11 Fiskesjö G, Levan A (1993) Evaluation of the first ten MEIC chemicals in the Allium test. Altern Lab Anim 21:139–149 Ghasemzadeh A, Jaafar HZE (2013) Interactive effect of salicylic acid on some physilogical features and antioxidant enzymes activity in ginger. Molecules 18:5965–5979. https://doi.org/10.3390/molecules18055965 Ghoulam C, Fores K (2001) Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L.). Seed Sci Technol 29:357–364 Gill KS, Singh OS (1985) Effect of salinity on carbohydrate metabolism during paddy (Oryza sativa) seed germination under salt stress condition. J Exp Biol 23:384–386 Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25. https://doi.org/10.1016/j.envexpbot.2009.08.005 He J, Ren Y, Xuebo P, Yan Y, Zhu C, Jiang D (2010) Salicylic acid alleviates the toxicity effect of cadmium on germination, seedling growth and amylase activity of rice. J Plant Nutr Soil Sci 173:300–305. https://doi.org/10.1002/jpln.200800302 Jain A, Srivastava HS (1981) Effect of salicylic acid on nitrate reductase activity in maize seedlings. J Plant Physiol 51:339–342. https://doi.org/10.1111/j.1399-3054.1981.tb05565.x Kalai T, Bouthour D, Manai J, Kaab LBB, Gouia H (2016) Salicylic acid alleviates the toxicity of cadmium on seedling growth amylases and phosphatases activity in germinating barley seeds. Arch Agron Soil Sci 62(6):892–904. https://doi.org/10.1080/03650340.2015.1100295 Kang HM, Salveit ME (2002) Chiling tolerance of maize cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115(4):571–576. https://doi.org/10.1034/j.1399-3054.2002.1150411.x Karuppaiah P, Rameshkumar S, Shah K, Marimuthu R (2003) Effect of antitranspirants on growth, photosyhthetic rate and yield characters Brinjal. Indian J Plant Physiol 8(2):189–192 Khodary SEA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int J Agric Biol 6:5–8 Klášterská I, Natarajan AT, Ramel C (1976) An interpretation of the origin of subchromatid aberrations and chromosome stickiness as a category of chromatid aberrations. Hereditas 83:153–162. https://doi.org/10.1111/j.1601-5223.1976.tb01581.x Kling GJ, Meyer MM (1983) Effect of phenolic compounds and indoacetic acid on adventitious root initation in cuttings of Phaseolus aureus, Acer saccharinum, and Acer ariseum. Hortic Sci 18:352–354 Kontek R, Osiecka R, Kontek B (2007) Clastogenic and mitodepressive effects of the insecticide dichlorvos on root meristems of Vicia faba. J Appl Genet 48(5):359–361. https://doi.org/10.1007/BF03195232 Lutsenko EK, Marushko EA, Kononenko NV, Leonova TG (2005) Effects of Fusicoccin on the early stages of sorghum growth at high NaCl concentrations. Russ J Plant Physiol 52:332–337. https://doi.org/10.1007/s11183-005-0050-5 Mahfouz H, Rayan WA (2017) Antimutagenics effects of stigmasterol on two salt stressed Lupinus termis cultivars. Egypt J Genet Cytol 46:253–272. https://doi.org/10.21608/ejgc.2018.9196 Maraklı S, Temel A, Gözükırmızı N (2014) Salt stress and homobrassinosteroid interactions during germination in barley roots. Not Bot Horti Agrobot Cluj Napoca 42(2):446–452. https://doi.org/10.15835/nbha4229461 Mesi A, Kopliku D (2013) Cytotoxic and genotoxic potency screening of two pesticides on Allium cepa L. Proc Tech 8:19–26. https://doi.org/10.1016/j.protcy.2013.11.005 Mesi A, Kopliku D, Golemi S (2012) The use of higher plants as bio-indicators of environmental pollution - a new approach for toxicity screening in Albania. Mediterr J Soc Sci 3(8):241–252 Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x Misra N, Saxena P (2009) Effect of salicylic acid on proline metabolismin lentil grown under salinity stress. Plant Sci 177:181–189. https://doi.org/10.1016/j.plantsci.2009.05.007 Mohsen AA, Ebrahim MKH, Ghoraba WFS (2014) Role of ascorbic acid on germination indexes and enzyme activity of Vicia faba seeds grown under salinity stres. J Stress Physiol Biochem 10(3):62–77 Munns R (2002) Salinity, growth and Phytohormones, salinity: environment-plants-molecules. Published by Kluwer academic publishers, ISBN 1-4020-0492-3, Dordrecht, the Netherlands, 522p. https://doi.org/10.1007/0-306-48155-3_13 Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911 Nag S, Dutta R, Pal KK (2013) Chromosomal aberrations induced by acetamiprid in Allium cepa L. root meristem cells. Ind J Fund Appl Life Sci 3(2):1–5 http://www.cibtech.org/jls.htm Noreen S, Ashraf M, Hussain M, Jamil A (2009) Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pak J Bot 42(1):473–479 Özdemir F, Bor M, Demiral T, Türkan I (2004) Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice under salinity stress. Plant Growth Regul 42:203–211. https://doi.org/10.1023/B:GROW.0000026509.25995.13 Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010 Patil BC, Bhat GI (1992) A comparative study of MH and EMS in the induction of chromosomal aberrations on lateral root meristem in Clitoria ternetea L. Cytologia 57:259–264. https://doi.org/10.1508/cytologia.57.259 Pirasteh-Anosheh H, Emam Y, Pessarakli M (2019) Grain filling pattern of Hordeum vulgare as affected by salicylic acid and salt stress. J Plant Nutr 42(3):278–286. https://doi.org/10.1080/01904167.2018.1554680 Ramanujam MP, Jaleel VA, Kumaravelu G (1998) Effect of salicylic acid on nodulation, nitrogenous compounds and related enzymes of Vigna mungo. Biol Plant 41(2):307–311. https://doi.org/10.1023/A:1001859824008 Raskin I (1992a) Role of saliciylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463. https://doi.org/10.1146/annurev.pp.43.060192.002255 Raskin I (1992b) Salicylate, a new plant hormone. Plant Physiol 99:799–803 https://www.jstor.org/stable/4274430 Raskin I (1995) Salicylic acid. In: Davies PJ (ed) Plant hormones, physiology, biochemistry and molecular biology. Kluwer Academic Publishers, London, pp 188–205. https://doi.org/10.1007/978-94-011-0473-9 Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV, Shakirova FM (2003) Salicyclic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol Special Issue:314–319 Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (aspirin) induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161. https://doi.org/10.1023/A:1006386800974 Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164(3):317–322. https://doi.org/10.1016/S0168-9452(02)00415-6 Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331(3):215–225. https://doi.org/10.1016/j.crvi.2008.01.002 Sharma PC, Gupta PK (1982) Karyotypes in some pulse crops. Nucleus 25:181–185 Singh RJ (2000) Plant Cytogenetics, 2nd edn. CRC Press, New York, 12p Singh B, Usha K (2003) Salicylic acid induced phyiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39(2):137–141. https://doi.org/10.1023/A:1022556103536 Singh NB, Yadav K, Amist N (2012) Mitigating effects of salicylic acid herbicidal stress. J Stress Physiol Biochem 8(4):27–35 Singh A, Srivastava AK, Singh AK (2013) Exogenous application of salicylic acid to alleviate the toxic effects of insecticides in Vicia faba L. Environ Toxicol 28(12):666–672. https://doi.org/10.1002/tox.20745 Tabur S, Demir K (2010a) Role of some growth regulators on cytogenetic activity of barley under salt stres. Plant Growth Regul 60:99–104. https://doi.org/10.1007/s10725-009-9424-6 Tabur S, Demir K (2010b) Protective roles of exogenous polyamines on chromosomal aberrations in Hordeum vulgare exposed to salinity. Biologia 65:947–953. https://doi.org/10.2478/s11756-010-0118-3 Tajbakhsh M, Zhou MX, Chen ZH, Mendham NJ (2006) Physiological and cytological response of salt-tolerant and non-tolerant barley to salinity during germination and early growth. Aust J Exp Agric 46(4):555–562. https://doi.org/10.1071/EA05026 Tobe K, Zhang L, Omasa K (2003) Alleviatory effects of calcium on the toxicity of sodium, potassium and magnesium chlorides to seed germination in three nonhalophytes. Seed Sci Res 13:47–54. https://doi.org/10.1079/SSR2002123 Trushin MV, Ratushnyak AY, Arkharova IA, Ratushnyak AA (2013) Genetic alterations revealed in Allium cepa test system under the action of some xenobiotics. World Appl Sci J 22(3):342–344. https://doi.org/10.5829/idosi.wasj.2013.22.03.2977 Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9. https://doi.org/10.1016/j.envexpbot.2009.05.008 Vicente O, Boscaiu M, Naranjo MA, Estrelles E, Belle’s JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58:463–481. https://doi.org/10.1016/j.jaridenv.2003.12.003 Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahi-Goy P, Metraux J, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094. https://doi.org/10.1105/tpc.3.10.1085 White RF (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410–412. https://doi.org/10.1016/0042-6822(79)90019-9 Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71