Exogenous Nitric Oxide Improves the Protective Effects of TiO2 Nanoparticles on Growth, Antioxidant System, and Photosynthetic Performance of Wheat Seedlings Under Drought Stress
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3
Amini S, Maali-Amiri R, Mohammadi R, Kazemi-Shahandashti SS (2017) cDNAAFLP analysis of transcripts induced in chickpea plants by TiO2 nanoparticles during cold stress. Plant Physiol Biochem 111:39–49. https://doi.org/10.1016/j.plaphy.2016.11.011
Baiazidi-Aghdam MT, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Braz J Bot 39:139–146. https://doi.org/10.1007/s40415-015-0227-x
Barrs H, Weatherley P (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428. https://doi.org/10.1071/BI9620413
Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060
Baudouin E (2011) The language of nitric oxide signaling. Plant Biol 13:233–242. https://doi.org/10.1111/j.1438-8677.2010.00403.x
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Chen ZH, Wang Y, Wang JW, Babla M, Zhao C, García Mata C, Sani E, Differ C, Mak M, Hills A, Amtmann A, Blatt MR (2016) Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis. New Phytol 209:1456–1469. https://doi.org/10.1111/nph.13714
Chen W, Dong Y, Hu G, Bai X (2018) Effects of exogenous nitric oxide in cadmium toxicity and antioxidative system in perennial ryegrass. J Soil Sci Plant Nutr 18:129–143. https://doi.org/10.4067/S0718-95162018005000601
Conway JR, Beaulieu AL, Beaulieu NL, Mazer SJ, Keller AA (2015) Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant. ACS Nano 9:1137–1149. https://doi.org/10.1021/acsnano.5b03091
Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Bioch 110:210–225. https://doi.org/10.1016/j.plaphy.2016.04.024
Farooq M, Nawaz A, Chaudhry MAM, Rehman A (2017) Foliage-applied sodium nitroprusside and hydrogen peroxide in improves resistance against terminal drought in bread wheat. J Agro Crop Sci 203:473–482. https://doi.org/10.1111/jac.12215
Ghorbanpour M, Hatami M, Hatami M (2015) Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of Hyoscyamus niger L. plants with nano-sized titanium dioxide and bulk application. Acta Agric Slov 105:23–32. https://doi.org/10.14720/aas.2015.105.1.03
Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314. https://doi.org/10.1104/pp.59.2.309
Grande F, Tucci P (2016) Titanium dioxide nanoparticles: a risk for human health? Mini Rev Med Chem 16:762–769. https://doi.org/10.2174/1389557516666160321114341
He Y, Wu J, Lv B, Li J, Gao Z, Xu W, Baluška F, Shi W, Shaw PC, Zhang J (2015) Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress. J Exp Bot 66:2271–2281. https://doi.org/10.1093/jxb/erv149
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. https://doi.org/10.1016/0003-9861(68)90654-1
Khan MN (2016) Nano-titanium dioxide (Nano-TiO2) mitigates NaCl stress by enhancing antioxidative enzymes and accumulation of compatible solutes in tomato (Lycopersicon esculentum Mill.). J Plant Sci 11:1–11. https://doi.org/10.3923/jps.2016.1.11
Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH (2017a) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194–209. https://doi.org/10.1016/j.plaphy.2016.05.038
Khan MN, Mobin M, Abbas ZK, Siddiqui MH (2017b) Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide 68:91–102. https://doi.org/10.1016/j.niox.2017.01.001
Kotapati KV, Palaka BK, Ampasala DR (2017) Alleviation of nickel toxicity in finger millet (Eleusine coracana L.) germinating seedlings by exogenous application of salicylic acid and nitric oxide. Crop J 5:240–250. https://doi.org/10.1016/j.cj.2016.09.002
Lichtenthaler HK (1987) Chorophylls and carotenoids-pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. https://doi.org/10.1016/0076-6879(87)48036-1
Maity A, Natarajan N, Vijay D, Srinivasan R, Pastor M, Malaviya DR (2016) Influence of metal nanoparticles (NPs) on seed germination and yield of forage oat (Avena sativa) and berseem (Trofolium alexandrinum). Proc Natl Acad Sci India Sect B Biol Sci 88:595–607. https://doi.org/10.1007/s40011-016-0796-x
Mishra S, Panda SK, Sahoo L (2014) Transgenic Asiatic grain legumes for salt tolerance and functional genomics. Rev Agric Sci 2:21–36. https://doi.org/10.7831/ras.2.21
Mohammadi H, Esmailpour M, Gheranpaye A (2016) Effects of TiO2 nanoparticles and water-deficit stress on morpho-physiological characteristics of dragonhead (Dracocephalum moldavica L.) plants. Acta Agric Slov 107:385–396. https://doi.org/10.14720/aas.2016.107.2.11
Moll J, Gogos A, Bucheli TD, Widmer F, van der Heijden MGA (2016) Effect of nanoparticles on red clover and its symbiotic micro-organisms. J Nanobiotechnol 14:36. https://doi.org/10.1186/s12951-016-0188-7
Nakano G, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidise in spinach chloroplasts. Plant Cell Physiol 22:867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, Schimel JP, Palmer RG, Hernandez-Viezcas JA, Zhao L, Gardea-Torresdey JL, Holden PA (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci 109:2451–2456. https://doi.org/10.1073/pnas.1205431109
Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26. https://doi.org/10.1016/j.btre.2014.10.009
Sahay S, Gupta M (2017) An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 67:39–52. https://doi.org/10.1016/j.niox.2017.04.011
Saxena I, Shekhawat GS (2013) Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration. Nitric Oxide 32:13–20. https://doi.org/10.1016/j.niox.2013.03.004
Shafea AA, Dawood MF, Zidan MA (2017) Wheat seedlings traits as affected by soaking at titanium dioxide nanoparticles. Environ Earth Ecol 1:102–111. https://doi.org/10.24051/eee/68607
Siddiqui MH, Alamri SA, Al-Khaishany MYY, Al-Qutami MA, Ali HM, Khan MN (2017) Sodium nitroprusside and indole acetic acid improve the tolerance of tomato plants to heat stress by protecting against DNA damage. J Plant Interact 12:177–186. https://doi.org/10.1080/17429145.2017.1310941
Silveira NM, Marcos FC, Frungillo L, Moura BB, Seabra AB, Salgado I, Machado EC, Hancock JT, Ribeiro RV (2017) S-nitrosoglutathione spraying improves stomatal conductance, Rubisco activity and antioxidant defense in both leaves and roots of sugarcane plants under water deficit. Physiol Plant 160:383–395. https://doi.org/10.1111/ppl.12575
Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017a) Nitric oxide alleviates silver nanoparticles (AgNPs)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177. https://doi.org/10.1016/j.plaphy.2016.06.015
Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017b) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81. https://doi.org/10.1016/j.plaphy.2016.06.026
Tumburu L, Andersen C, Rygiewicz P, Reichman J (2015) Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants. Environ Toxicol Chem 34:70–83. https://doi.org/10.1002/etc.2756
Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66. https://doi.org/10.1016/S0168-9452(99)00197-1
Wu S, Hu C, Tan Q, Lu L, Shi K, Yong Z, Sun X (2015) Drought stress tolerance mediated by zinc-induced antioxidative defense and osmotic adjustment in cotton (Gossypium hirsutum). Acta Physiol Plant 37:1–9. https://doi.org/10.1007/s11738-015-1919-3
Wu S, Hu C, Tan Q, Xu S, Sun X (2017) Nitric oxide mediates molybdenum-induced antioxidant defense in wheat under drought stress. Front Plant Sci 8:1085. https://doi.org/10.3389/fpls.2017.01085
Yan F, Liu Y, Sheng H, Wang Y, Kang H, Zeng J (2016) The salicylic acid and nitric oxide increase photosynthesis and antioxidant defense in wheat under UV-B stress. Biol Plant 60:686–694. https://doi.org/10.1007/s10535-016-0622-6