Kết quả tồn tại, duy nhất và ổn định Ulam cho các phương trình vi phân phân loại hỗn hợp với toán tử p-Laplacian
Tóm tắt
Từ khóa
#phương trình vi phân phân loại #p-Laplacian #ổn định Ulam #đạo hàm phân số #tồn tại và duy nhất của nghiệmTài liệu tham khảo
Abbas, S.; Benchohra, M.; Lagreg, J.; Alsaedi, A.; Zhou, Y.: Existence and ulam stability for fractional differential equations of Hilfer–Hadamard type. Adv. Differ. Equ. 180 (2017)
Abbas, S.; Benchohra, M.; Lazreg, J.E.; Nieto, J.J.; Zhou, Y.: Fractional differential equations and inclusions. Class. Adv. Top (2023)
Ahmad, D.; Agarwal, R.P.; Rahman, G.U.R.: Formulation, solution’s existence, and stability analysis for multi-term system of fractional-order differential equations. Symmetry 14(7) (2022)
Chen, C.; Bohner, M.; Jia, B.: Ulam–Hyers stability of Caputo fractional difference equations. Math. Meth. Appl. Sci. 42(18), 7461–7470 (2019). https://doi.org/10.1002/mma.5869
Dai, Q.; Gao, R.; Li, Z.; Wang, C.: Stability of Ulam–Hyers and Ulam–Hyers–Rassias for a class of fractional differential equations. Adv. Differ. Equ. 103 (2020). https://doi.org/10.1186/s13662-020-02558-4
Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg (2010)
Guezane Lakoud, A.; Khaldi, R.; Kılıçman, A.: Existence of solutions for a mixed fractional boundary value problem. Adv. Differ. Equ. 164 (2017)
Heymans, N.; Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta. 45(5), 765–771 (2006)
Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27(4), 222–224 (1941)
Jafari, H.; Baleanu, D.; Khan, H.; Khan, R.A.; Khan, A.: Existence criterion for the solutions of fractional order p-Laplacian boundary value problems. Bound. Value Probl. 164 (2015)
Kenef, E.; Guezane-Lakoud, A.: Impulsive mixed fractional differential equations with delay. Progr. Fract. Differ. Appl. 7(3), 203–215 (2021)
Khan, H.; Chen, W.; Sun, H.: Analysis of positive solution and Hyers–Ulam stability for a class of singular fractional differential equations with p-Laplacian in Banach space. Math. Methods Appl. Sci. 41(9), 3430–3440 (2018)
Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)
Liang, S.; Zhang, J.: Existence and uniqueness of positive solutions for integral boundary problems of nonlinear fractional differential equations with p-Laplacian operator. Rocky Mountain. J. Math. 44(3), 953–974 (2014)
Liu, K.; Wang, J.; Zhou, Y.; O’Regan, D.: Hyers–Ulam stability and existence of solutions for fractional differential equations with Mittag–Leffler kernel. Chaos Soliton. Fract 132, 109534 (2020)
Luo, D.; Luo, Z.; Qiu, H.: Existence and Hyers–Ulam stability of solutions for a mixed fractional-order nonlinear delay difference equation with parameters. Math. Prob. Eng. 1–12 (2020)
Mahmudov, N.I.; Unul, S.: Existence of solutions of fractional boundary value problems with p-Laplacian operator. Bound. Value Probl. 99 (2015)
Merzoug, I.; Guezane-Lakoud, A.; Khaldi, R.: Existence of solutions for a nonlinear fractional p-Laplacian boundary value problem. Rendiconti del Circolo Matematico di Palermo Series 2 69(3), 1099–1106 (2019). https://doi.org/10.1007/s12215-019-00459-4
Ramdane, S.; Guezane Lakoud, A.: Existence of positive solutions for p-Laplacian systems involving left and right fractional derivatives. Arab J. Math. Sci. 27(2), 235–248 (2021) https://www.emerald.com/insight/1319-5166
Rus, I.A.: Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 26, 103–107 (2010)
Shen, T.; Liu, W.; Shen, X.: Existence and uniqueness of solutions for several BVPs of fractional differential equations with p-Laplacian operator. Mediterr. J. Math. 13, 4623–4637 (2016)
Siricharuanun, P.; Chasreechai, S.; Sitthiwirattham, T.: On a coupled system of fractional sum-difference equations with p-Laplacian operator. Adv. Differ. Equ. 361 (2020)
Song, S.; Cui, Y.: Existence of solutions for integral boundary value problems of mixed fractional differential equations under resonance. Bound. Value Probl. 23 (2020). https://doi.org/10.1186/s13661-020-01332-5
Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publishers, New York (1960)
Wang, J.; Li, X.: Ulam–Hyers stability of fractional Langevin equations. Appl. Math. Comput. 258, 72–83 (2015)
Zhai, C.; Ma, Y.; Li, H.: Unique positive solution for a p-Laplacian fractional differential boundary value problem involving Riemann–Stieltjes integral. AIMS Math. 5(5), 4754–4769 (2020)