Existence of weak solutions to a certain homogeneous parabolic Neumann problem involving variable exponents and cross-diffusion

Springer Science and Business Media LLC - Tập 6 - Trang 685-709 - 2020
Gurusamy Arumugam1, André H. Erhardt2
1Department of Mathematics, National Institute of Technology Calicut, Kattangal, India
2Department of Mathematics, University of Oslo, Oslo, Norway

Tóm tắt

This paper deals with a homogeneous Neumann problem of a nonlinear diffusion system involving variable exponents dependent on spatial and time variables and cross-diffusion terms. We prove the existence of weak solutions using Galerkin’s approximation and we derive suitable energy estimates. To this end, we establish the needed Poincaré type inequality for variable exponents related to the Neumann boundary problem. Furthermore, we show that the investigated problem possesses a unique weak solution and satisfies a stability estimate, provided some additional assumptions are fulfilled. In addition, we show under which conditions the solution is nonnegative.

Tài liệu tham khảo

Aboulaich, R., Meskine, D., Souissi, A.: New diffusion models in image processing. Comput. Math. Appl. 56(4), 874–882 (2008) Acerbi, E., Mingione, G.: Regularity results for electrorheological fluids: the stationary case. C. R. Math. Acad. Sci. Paris 334(9), 817–822 (2002) Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164(3), 213–259 (2002) Alkhutov, Y.A., Zhikov, V.V.: Existence theorems for solutions of parabolic equations with a variable order of nonlinearity. Tr. Mat. Inst. Steklova 270, 21–32 (2010) Antontsev, S., Kuznetsov, I., Shmarev, S.: Global higher regularity of solutions to singular \(p(x, t)\)-parabolic equations. J. Math. Anal. Appl. 466(1), 238–263 (2018) Antontsev, S., Shmarev, S.: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal. 60(3), 515–545 (2005) Antontsev, S., Shmarev, S.: Anisotropic parabolic equations with variable nonlinearity. Publ. Math. 53(2), 355–399 (2009) Antontsev, S., Shmarev, S.: Vanishing solutions of anisotropic parabolic equations with variable nonlinearity. J. Math. Anal. Appl. 361(2), 371–391 (2010) Antontsev, S., Shmarev, S.: Evolution PDEs with Nonstandard Growth Conditions. Atlantis Studies in Differential Equations, vol. 4. Atlantis Press, Paris (2015) Antontsev, S., Shmarev, S.: On a class of fully nonlinear parabolic equations. Adv. Nonlinear Anal. 8(1), 79–100 (2019) Antontsev, S., Zhikov, V.: Higher integrability for parabolic equations of \(p(x, t)\)-Laplacian type. Adv. Differ. Equ. 10(9), 1053–1080 (2005) Arumugam, G., Erhardt, A.H., Eswaramoorthy, I., Krishnan, B.: Existence of weak solutions to the Keller–Segel chemotaxis system with additional cross-diffusion. Nonlinear Anal. Real World Appl. 54, 103090 (2020) Bendahmane, M., Langlais, M.: A reaction-diffusion system with cross-diffusion modeling the spread of an epidemic disease. J. Evol. Equ. 10(4), 883–904 (2010) Bhuvaneswari, V., Lingeshwaran, S., Balachandran, K.: Weak solutions for \(p\)-Laplacian equation. Adv. Nonlinear Anal. 1(4), 319–334 (2012) Chen, X., Jüngel, A.: A note on the uniqueness of weak solutions to a class of cross-diffusion systems. J. Evol. Equ. 18(2), 805–820 (2018) Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006) Chorfi, N., Rădulescu, V.D.: Small perturbations of elliptic problems with variable growth. Appl. Math. Lett. 74, 167–173 (2017) Diening, L., Harjulehto, P., Peter, H., Ru̇žička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011) Diening, L., Nägele, P., Ru̇žička, M.: Monotone operator theory for unsteady problems in variable exponent spaces. Complex Var. Elliptic Equ. 57(11), 1209–1231 (2012) Eleuteri, M., Harjulehto, P., Lukkari, T.: Global regularity and stability of solutions to obstacle problems with nonstandard growth. Rev. Mat. Complut. 26(1), 147–181 (2013) Erhardt, A.: Calderón–Zygmund theory for parabolic obstacle problems with nonstandard growth. Adv. Nonlinear Anal. 3(1), 15–44 (2014) Erhardt, A.H.: Existence and gradient estimates in parabolic obstacle problems with nonstandard growth, Ph.D. thesis, Friedrich–Alexander University Erlangen–Nuremberg, (2013) Erhardt, A.H.: Existence of solutions to parabolic problems with nonstandard growth and irregular obstacles. Adv. Differ. Equ. 21(5–6), 463–504 (2016) Erhardt, A.H.: Higher integrability for solutions to parabolic problems with irregular obstacles and nonstandard growth. J. Math. Anal. Appl. 435(2), 1772–1803 (2016) Erhardt, A.H.: Compact embedding for \(p(x, t)\)-Sobolev spaces and existence theory to parabolic equations with \(p(x, t)\)-growth. Rev. Mat. Complut. 30(1), 35–61 (2017) Erhardt, A.H.: The stability of parabolic problems with nonstandard \(p(x, t)\)-growth. Mathematics 5(4), 14 (2017) Feireisl, E.: Mathematical analysis of fluids in motion: from well-posedness to model reduction. Rev. Mat. Complut. 26(2), 299–340 (2013) Franzina, G., Lindqvist, P.: An eigenvalue problem with variable exponents. Nonlinear Anal. 85, 1–16 (2013) Gao, W., Guo, B.: Existence and localization of weak solutions of nonlinear parabolic equations with variable exponent of nonlinearity. Ann. Mat. Pura Appl. (4) 191(3), 551–562 (2012) Gerstenmayer, A., Jüngel, A.: Analysis of a degenerate parabolic cross-diffusion system for ion transport. J. Math. Anal. Appl. 461(1), 523–543 (2018) Giaquinta, M., Modica, G.: Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. H. Poincaré Anal. Non Linéaire 3(3), 185–208 (1986) Guo, B., Gao, W.: Study of weak solutions for parabolic equations with nonstandard growth conditions. J. Math. Anal. Appl. 374(2), 374–384 (2011) Hamburger, C.: Regularity of differential forms minimizing degenerate elliptic functionals. J. Reine Angew. Math. 431, 7–64 (1992) Harjulehto, P., Hästö, P., Latvala, V., Toivanen, O.: Critical variable exponent functionals in image restoration. Appl. Math. Lett. 26(1), 56–60 (2013) Hsieh, C.-Y.: Global existence of solutions for the Poisson–Nernst–Planck system with steric effects. Nonlinear Anal. Real World Appl. 50, 34–54 (2019) Jüngel, A., Zamponi, N.: Qualitative behavior of solutions to cross-diffusion systems from population dynamics. J. Math. Anal. Appl. 440(2), 794–809 (2016) Lair, A.V., Oxley, M.E.: A necessary and sufficient condition for global existence for a degenerate parabolic boundary value problem. J. Math. Anal. Appl. 221(1), 338–348 (1998) Li, Y.: Global boundedness of weak solution in an attraction–repulsion chemotaxis system with \(p\)-Laplacian diffusion. Nonlinear Anal. Real World Appl. 51, 102933, 18 (2020) Liu, B., Dong, M.: A nonlinear diffusion problem with convection and anisotropic nonstandard growth conditions. Nonlinear Anal. Real World Appl. 48, 383–409 (2019) Liu, Y., Zhang, Z., Zhu, L.: Global existence and blowup for a quasilinear parabolic equations with nonlinear gradient absorption. Adv. Differ. Equ. 24(3–4), 229–256 (2019) Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 13, 115–162 (1959) Ok, J.: Harnack inequality for a class of functionals with non-standard growth via De Giorgi’s method. Adv. Nonlinear Anal. 7(2), 167–182 (2018) Pan, N., Zhang, B., Cao, J.: Weak solutions for parabolic equations with \(p(x)\)-growth. Electron. J. Differ. Equ. 209, 15 (2016) Prasath, V.B.S., Vorotnikov, D.: On time adaptive critical variable exponent vectorial diffusion flows and their applications in image processing I: analysis. Nonlinear Anal. 168, 176–197 (2018) Roubíček, T.: Nonlinear Partial Differential Equations with Applications, 2nd edn. International Series of Numerical Mathematics, vol. 153. Birkhäuser, Basel (2013) Ružičkȧ, M.: Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math. 49(6), 565–609 (2004) Shangerganesh, L., Gurusamy, A., Balachandran, K.: Weak solutions for nonlinear parabolic equations with variable exponents. Commun. Math. 25(1), 55–70 (2017) Singer, T., Vestberg, M.: Local boundedness of weak solutions to the diffusive wave approximation of the shallow water equations. J. Differ. Equ. 266(6), 3014–3033 (2019) Winkert, P., Zacher, R.: Global a priori bounds for weak solutions to quasilinear parabolic equations with nonstandard growth. Nonlinear Anal. 145, 1–23 (2016) Winther, R.: Error estimates for a Galerkin approximation of a parabolic control problem. Ann. Mat. Pura Appl. (4) 117, 173–206 (1978)