Existence of solutions for two types of generalized versions of the Cahn-Hilliard equation
Tóm tắt
Từ khóa
Tài liệu tham khảo
H. Abels, M. Wilke: Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67 (2007), 3176–3193.
R. A. Adams: Sobolev Spaces. Pure and Applied Mathematics 65. A Series of Monographs and Textbooks, Academic Press, New York, 1975.
M. Brokate, N. Kenmochi, I. Müller, J. F. Rodriguez, C. Verdi: Phase transitions and hysteresis. Lectures Given at the Third C.I.M.E., 1993, Montecatini Terme, Italy (A. Visintin, ed.). Lecture Notes in Mathematics 1584, Springer, Berlin, 1994.
G. C. Buscaglia, R. F. Ausas: Variational formulations for surface tension, capillarity and wetting. Comput. Methods Appl. Mech. Eng. 200 (2011), 3011–3025.
J. W. Cahn, C. M. Elliott, A. Novick-Cohen: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7 (1996), 287–301.
L. Changchun: Cahn-Hilliard equation with terms of lower order and non-constant mobility. Electron. J. Qual. Theory Differ. Equ. 2003 (2003), 9 pp. (electronic only).
R. Dal Passo, L. Giacomelli, A. Novick-Cohen: Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility. Interfaces Free Bound. 1 (1999), 199–226.
A. Debussche, L. Dettori: On the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal., Theory Methods Appl. 24 (1995), 1491–1514.
C. Dellacherie, P.-A. Meyer: Probabilities and Potential. North-Holland Mathematics Studies 29, North-Holland Publishing Company, Amsterdam, 1978.
C. M. Elliott, H. Garcke: On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27 (1996), 404–423.
C. M. Elliott, S. Zheng: On the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 96 (1986), 339–357.
C. G. Gal: Global well-posedness for the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions. Adv. Differ. Equ. 12 (2007), 1241–1274.
G. Gilardi, A. Miranville, G. Schimperna: On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Commun. Pure Appl. Anal. 8 (2009), 881–912.
M. Grasselli, A. Miranville, R. Rossi, G. Schimperna: Analysis of the Cahn-Hilliard equation with a chemical potential dependent mobility. Commun. Partial Differ. Equations 36 (2011), 1193–1238.
M. Heida: Modeling Multiphase Flow in Porous Media with an Application to Permafrost Soil. Univ. Heidelberg, Naturwissenschaftlich-Mathematische Gesamtfakultät, Heidelberg; Charles Univ. Praha, Faculty of Mathematics and Physics (PhD Thesis), Praha, 2011.
M. Heida: On the derivation of thermodynamically consistent boundary conditions for the Cahn-Hilliard-Navier-Stokes system. Internat. J. Engrg. Sci. 62 (2013), 126–156.
M. Heida: On systems of Cahn-Hilliard and Allen-Cahn equations considered as gradient flows in Hilbert spaces. J. Math. Anal. Appl. 423 (2015), 410–455.
A. Ito, N. Kenmochi, M. Niezgódka: Large-time behaviour of non-isothermal models for phase separation. Proc. Conf. Elliptic and Parabolic Problems, 1994. Pitman Res. Notes Math. Ser. 325, Longman Scientific & Technical, Harlow, 1995, pp. 120–151.
S. Lisini, D. Matthes, G. Savaré: Cahn-Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics. J. Differ. Equations 253 (2012), 814–850.
C. Liu: On the convective Cahn-Hilliard equation with degenerate mobility. J. Math. Anal. Appl. 344 (2008), 124–144.
C. Liu, Y. Qi, J. Yin: Regularity of solutions of the Cahn-Hilliard equation with non-constant mobility. Acta Math. Sin., Engl. Ser. 22 (2006), 1139–1150.
J. S. Lowengrub, A. Rätz, A. Voigt: Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79 (2009), 031926, 13 pp.
M. Mercker: Models, numerics and simulations of deforming biological surfaces. Univ. Heidelberg, Naturwissenschaftlich-Mathematische Gesamtfakultät (PhD Thesis), Heidelberg, 2012.
M. Mercker, A. Marciniak-Czochra, T. Richter, D. Hartmann: Modeling and computing of deformation dynamics of inhomogeneous biological surfaces. SIAM J. Appl. Math. 73 (2013), 1768–1792.
M. Mercker, T. Richter, D. Hartmann: Sorting mechanisms and communication in phase separating coupled monolayers. J. Phys. Chem. B 115 (2011), 11739–11745, DOI: 10.1021/jp204127g.
A. Miranville: Existence of solutions for Cahn-Hilliard type equations. Discrete Contin. Dyn. Syst. 2003 (2003), Suppl. Vol., 630–637.
A. Miranville, S. Zelik: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27 (2004), 545–582.
A. Miranville, S. Zelik: The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete Contin. Dyn. Syst. 28 (2010), 275–310.
L. Mugnai, M. Röger: The Allen-Cahn action functional in higher dimensions. Interfaces Free Bound. 10 (2008), 45–78.
L. Mugnai, M. Röger: Convergence of perturbed Allen-Cahn equations to forced mean curvature flow. Indiana Univ. Math. J. 60 (2011), 41–76.
A. Novick-Cohen: The Cahn-Hilliard equation. Handbook of Differential Equations: Evolutionary Equations. Vol. IV. Elsevier/North-Holland, Amsterdam, 2008, pp. 201–228.
A. Novick-Cohen: The Cahn-Hilliard Equation: From Backwards Diffusion to Surface Diffusion. To appear in Cambridge University Press.
T. Qian, X.-P. Wang, P. Sheng: A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564 (2006), 333–360.
R. Racke, S. Zheng: The Cahn-Hilliard equation with dynamic boundary conditions. Adv. Differ. Equ. 8 (2003), 83–110.
N. Roidos, E. Schrohe: The Cahn-Hilliard equation and the Allen-Cahn equation on manifolds with conical singularities. Commun. Partial Differ. Equations 38 (2013), 925–943.
R. Rossi: On two classes of generalized viscous Cahn-Hilliard equations. Commun. Pure Appl. Anal. 4 (2005), 405–430.
R. Rossi, G. Savaré: Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM, Control Optim. Calc. Var. 12 (2006), 564–614.
S. Serfaty: Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst. 31 (2011), 1427–1451.
U. Stefanelli: The Brezis-Ekeland principle for doubly nonlinear equations. SIAM J. Control Optim. 47 (2008), 1615–1642.
J. E. Taylor, J. W. Cahn: Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys. 77 (1994), 183–197.
R. Temam: Navier-Stokes Equations. Theory and Numerical Analysis. American Mathematical Society, Providence, 2001.
S. Torabi, J. Lowengrub, A. Voigt, S. Wise: A new phase-field model for strongly anisotropic systems. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 465 (2009), 1337–1359.
S. Torabi, S. Wise, J. Lowengrub, A. Rätz, A. Voigt: A new method for simulating strongly anisotropic Cahn-Hilliard equations. Materials Science and Technology-Association for Iron and Steel Technology 3 (2007), 1432–1444.