Tồn tại của các nghiệm cho các bất đẳng thức giống biến thể hội nhập tổng quát

Springer Science and Business Media LLC - Tập 18 - Trang 141-150 - 1997
Ding Xieping1
1Department of Mathematics, Sichuan Normal University, Chengdu, P R China

Tóm tắt

Trong bài báo này, một số định lý tồn tại nghiệm cho một lớp bất đẳng thức giống biến thể hội nhập tổng quát với các ánh xạ không liên tục được chứng minh dưới bối cảnh paracompact trong các không gian vector topo. Những định lý này tổng hợp, cải tiến và tổng quát nhiều kết quả gần đây.

Từ khóa

#bất đẳng thức #nghiệm #ánh xạ không liên tục #không gian vector topo #định lý tồn tại

Tài liệu tham khảo

J. P. Aubin and I. Ekeland,Applied Nonlinear Analysis, John Wiley & Sons, New York (1984). C. Baiocchi and A. Capelo.Variational and Quasi-variational Inequalities. John Wiley & Sons, New York (1984). D. Kinderlehrer and G. Stampacchi,An Introduction to Variational Inequalities, Acad. Press, New York (1980). D. Chan and J. S. Pang. The generalized quasi-variational inequalities,Math. Oper. Res.,7 (1982), 211–222. P. T. Harker and J. S. Pang. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications,Math. Program, Ser B.48 (1990), 161–220. M. A. Noor. General variational inequalities.Appl. Math. Lett.,1 (1988), 119–122. M. A. Noor, General algorithm and sensitivity for variational inequalities,J. Appl. Math. Stoch. Anal.,5 (1992), 29–42. M. A. Noor, K. I. Noor and T. M. Rassias, Some aspects of variational inequalities,J. Comput. Appl. Math.,47 (1993), 285–312. J. C. Yao, General variational inequalities in Banach spaces,Appl. Math. Lett.,5, 1 (1992), 51–54. J. C. Yao, On the general variational inequalities,J. Math. Anal. Appl.,174 (1993), 550–555. J. C. Yao and J. S. Guo, Variational and generalized variational inequalities with discontinuous mappings,J. Math. Anal. Appl.,182 (1994), 371–392. X. P. Ding and E. Tarafdar, Generalized nonlinear variational inequalities with non-monotone set-valued mappings,Appl. Math. Lett.,7, 4 (1994), 5–11. X. P. Ding A class of generalized variational inequalities and its applications,J. Sichuan Normal Univ.,17, 6 (1994), 10–16. (in Chinese) X. P. Ding Existence of solutions for a class of generalized variational inequalities,J. Yantai Univ.,2 (1995), 15–22. (in Chinese) X. P. Ding Implicit variational inequalities with discontinuous mappings.J. Sichuan Normal Univ.,18, 2 (1995), 8–15. (in Chinese) J. Parida, M. Sahoo and A. Kumar, A variational-like inequality problem,Bull. Austral. Math. Soc.,39 (1989), 225–231. N. H. Dien, Some remarks on variational-like inequalities.Bull. Austral. Math. Soc.,46 (1992), 335–342. A. H. Siddiqi, A. Khaliq and Q. H. Ansari, On variational-like inequalities.Am. Sci. Math. Québec. 18, 1 (1994), 95–104. X. P. Ding Quasi-variational inequalities and social equilibrium.Appl. Math. and Mech. (English Ed.),12, 7 (1991), 639–646. W. W. Hogan. Point-to-set maps in mathematical programming.SIAM Rev.,15 (1973), 591–603. M. H. Shih and K. K. Tan, Covering theorems of convex sets related fixed point theorems, inNonlinear and Convex Analysis, Marcel Dekker Inc., New York, (1987), 235–244. J. X. Zhou and G. Chen, Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities,J. Math. Anal. Appl.,132 (1988). 213–225. H. Kneser. Sur un théoème fondamantal de la théorie des jeux.C. R. Acad. Sci., Paris,234 (1952), 2418–2420. J. C. Yao, Gemeralized-quasi-variational inequality problems with discontinuous mappings,Math. Oper. Res.,20, 2 (1995), 465–478. O. H. Merrill, Applications and extensions of an algorithm that computes fixed points of certain upper semicontinuous point-to-set mappings, Ph. D Thesis. Univ. of Michigan, Ann Arbor, MI. (1972).