Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces

Elhoussine Azroul1, Abdelmoujib Benkirane1, Mohammed Srati1
1Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, Laboratory of Mathematical Analysis and Applications, Fez, Morocco

Tóm tắt

In this paper, we investigate the existence of weak solution for a fractional type problems driven by a nonlocal operator of elliptic type in a fractional Orlicz–Sobolev space, with homogeneous Dirichlet boundary conditions. We first extend the fractional Sobolev spaces $$W^{s,p}$$ to include the general case $$W^sL_A$$ , where A is an N-function and $$s\in (0,1)$$ . We are concerned with some qualitative properties of the space $$W^sL_A$$ (completeness, reflexivity and separability). Moreover, we prove a continuous and compact embedding theorem of these spaces into Lebesgue spaces.

Từ khóa


Tài liệu tham khảo

Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975) Afrouzi, G.A., Radulescu, V., Shokooh, S.: Multiple solutions of Neumann problems an Orlicz–Sobolev spaces setting. Bull. Malays. Math. Sci. Soc. 40, 1591–1611 (2017) Alberti, G., Bouchitte, G., Seppecher, P.: Phase transition with the line-tension effect. Arch. Ration. Mech. Anal. 144(1), 1–46 (1998) Ambrosion, V.: Nontrivial solutions for a fractional p-Laplacian problem via Rabier Theorem. J. Complex Var. Elliptic Equ. 62, 838–847 (2017) Azroul, E., Benkirane, A., Srati, M.: Three solutions for Kirchhoff problem involving the nonlocal fractional \(p\)-Laplacian. Adv. Oper. Theory 4(4), 821–835 (2019) Azroul, E., Benkirane, A., Tienari, M.: On the regularity of solutions to the Poisson equation in Orlicz-spaces. Bull. Belg. Math. Soc. Simon Stevin 7(1), 1–12 (2000) Bates, P. W.: On some nonlocal evolution equations arising in materials science. In Nonlinear dynamics and evolution equations, Vol. 48 of Fields Inst. Commun., pages 13-52. Am. Math. Soc., Providence, RI, (2006) Biler, P., Karch, G., Woyczynski, W.A.: Critical nonlinearity exponent and self-similar asymptotics for L’evy conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(5), 613–637 (2001) Biler, P., Karch, G., Monneau, R.: Nonlinear diffusion of dislocation density and self-similar solutions. Commun. Math. Phys. 294(1), 145–168 (2010) Bonanno, G., Molica Bisci, G., Rádulescu, V.: Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz–Sobolev spaces. C. R. Acad. Sci. Paris 349(I), 263–268 (2011) Bonanno, G., Molica Bisci, G., Rádulescu, V.: Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz–Sobolev spaces. Nonlinear Anal. TMA 75, 4441–4456 (2012) Bonder, J.F., Llanos, M.P., Salort, A.M.: A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians, arXiv:1807.01669 Bonder, J.F., Salort, A.M.: Fractional order Orlicz-Soblev spaces. J. Funct. Anal. 277(2), 333–367 (2019) Cabre, X., Sola-Morales, J.: Layer solutions in a half-space for boundary reactions. Commun. Pure Appl. Math. 58(12), 1678–1732 (2005) Caffarelli, L., Mellet, A., Sire, Y.: Traveling waves for a boundary reaction-diffusion equation. Adv. Math. 230(2), 433–457 (2019) Caffarelli, L., Valdinoci, E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial Differ. Equ. 41(1–2), 203–240 Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010) Chermisi, M., Valdinoci, E.: A symmetry result for a general class of divergence form PDEs in fibered media. Nonlinear Anal. 73(3), 695–703 (2010) Clément, Ph, de Pagter, B., Sweers, G., de Thélin, F.: Existence of solutions to a semilinear elliptic system through Orlicz–Sobolev spaces. Mediterr. J. Math. 1, 241–267 (2004) Cont, R., Tankov, P.: Financial modelling with jump processes. Chapman Hall/CRC Financial Mathematics Series, Chapman Hall/CRC, Boca Raton, FL (2004) Demengel, F., Demengel, G.: Functional Spaces for the Theory of Elliptic Partial Differential Equations. Springer, New York (2012) Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math 136(5), 521–573 (2012) Donaldson, T.K., Trudinger, N.S.: Orlicz–Sobolev spaces and embedding theorems. J. Funct. Anal. 8, 52–75 (1971) Duistermaat, J.J., Guillemin, V.W.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math 29(1), 3979 (1975) Fefferman, C.: Relativistic stability of matter. I Rev. Mat. Iberoamericana 2(1–2), 119–213 (1986) Franzina, G., Palatucci, G.: Fractional p-eigenvalues. Riv. Math. Univ. Parma (N.S.) 5(2), 373–386 (2014) Krasnosel’skii, M. A., Rutickii, J. B.: Convex functions and Orlicz spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, (1961) Kurzke, M.: A nonlocal singular perturbation problem with periodic well potential. ESAIM Control Optim. Calc. Var 12(1), 52–63 (2006). (electronic) Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. 49, 795–826 (2014) Luxemburg, W.A.J.: Banach function spaces. Getal en Figuur. 6. Van Gorcum & Comp., Assen, p 70 (1955) Mihäilescu, M., Rädulescu, V.: Neumann problems associated to nonhomogeneous differential operators in Orlicz-Soboliv spaces. Ann. Inst. Fourier 58(6), 2087–2111 (2008) Milakis, E., Silvestre, L.: Regularity for the nonlinear Signorini problem. Adv. Math. 217, 1301–1312 (2008) Mingione, G.: The singular set of solutions to non-differentiable elliptic systems. Arch. Ration. Mech. Anal. 166, 287–301 (2003) Mingione, G.: Gradient potential estimates. J. Eur. Math. Soc. 13, 459486 (2011) Mironescu, P., Sickel, W.: A Sobolev non embedding. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26(3), 291–298 (2015) O’Neil, R.: Fractional integration in Orlicz spaces. I Trans. Am. Math. Soc. 1 15, 300–328 (1965) Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker Inc, New York (1991) Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1966) Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Ph.D. Thesis, Austin University, (2005) Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer-Verlag, Berlin, Heidelberg (1990) Whitham, G.B.: Linear and nonlinear waves. Pure and Applied Mathematics. Wiley-Interscience [John Wiley and Sons], New York (1974)