Existence of solutions for a Lipschitzian vibroimpact problem with time-dependent constraints

Samir Adly1, Nguyen Nang Thieu1
1Laboratoire XLIM, Université de Limoges, 87060, Limoges, France

Tóm tắt

AbstractWe study a mechanical system with a finite number of degrees of freedom, subjected to perfect time-dependent frictionless unilateral (possibly nonconvex) constraints with inelastic collisions on active constraints. The dynamic is described in the form of a second-order measure differential inclusion. Under some regularity assumptions on the data, we establish several properties of the set of admissible positions, which is not necessarily convex but assumed to be uniformly prox-regular. Our approach does not require any second-order information or boundedness of the Hessians of the constraints involved in the problem and are specific to moving sets represented by inequalities constraints. On that basis, we are able to discretize our problem by the time-stepping algorithm and construct a sequence of approximate solutions. It is shown that this sequence possesses a subsequence converging to a solution of the initial problem. This methodology is not only used to prove an existence result but could be also used to solve numerically the vibroimpact problem with time-dependent nonconvex constraints.

Từ khóa


Tài liệu tham khảo

Adly, S., Haddad, T.: Well-posedness of nonconvex degenerate sweeping process via unconstrained evolution problems. Nonlinear Anal. Hybrid Syst. 36, 100832 (2020)

Adly, S., Nacry, F., Thibault, L.: Preservation of prox-regularity of sets with applications to constrained optimization. SIAM J. Optim. 26, 448–473 (2016)

Attouch, H., Cabot, A., Redont, P.: The dynamics of elastic shocks via epigraphical regularization of a differential inclusion. Barrier and penalty approximations. Adv. Math. Sci. Appl. 12(1), 273–306 (2002)

Attouch, H., Maingé, P.E., Redont, P.: A second-order differential system with Hessian-driven damping; application to non-elastic shock laws. Differ. Equ. Appl. 4(1), 27–65 (2012)

Aubin, J.-P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Springer, Berlin (1984)

Ballard, P.: The dynamics of discrete mechanical systems with perfect unilateral constraints. Arch. Ration. Mech. Anal. 154, 199–274 (2000)

Bernicot, F., Lefebvre-Lepot, A.: Existence results for nonsmooth second-order differential inclusions, convergence result for a numerical scheme and application to the modeling of inelastic collisions. Confluentes Math. 2, 445–471 (2010)

Bernicot, F., Venel, J.: Stochastic perturbation of sweeping process and a convergence result for an associated numerical scheme. J. Differ. Equ. 251, 1195–1224 (2011)

Bernicot, F., Venel, J.: Existence of solutions for second-order differential inclusions involving proximal normal cones. J. Math. Pures Appl. 9(98), 257–294 (2012)

Bounkhel, M.: Existence results for first and second order nonconvex sweeping processes with perturbations and with delay: fixed point approach. Georgian Math. J. 13, 239–249 (2006)

Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010)

Cabot, A., Paoli, L.: Asymptotics for some vibroimpact problems with a linear dissipation term. J. Math. Pures Appl. (9) 87(3), 291–323 (2007)

Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

Colombo, G., Thibault, L.: Prox-regular sets and applications. In: Handbook of Nonconvex Analysis and Applications, Somerville, pp. 99–182 (2010)

Dzonou, R., Monteiro Marques, M.D.P.: A sweeping process approach to inelastic contact problems with general inertia operators. Eur. J. Mech. A, Solids 26, 474–490 (2007)

Dzonou, R., Monteiro Marques, M.D.P., Paoli, L.: A convergence result for a vibro-impact problem with a general inertia operator. Nonlinear Dyn. 58, 361–384 (2009)

Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)

Mabrouk, M.: A unified variational model for the dynamics of perfect unilateral constraints. Eur. J. Mech. A, Solids 17, 819–842 (1998)

Maury, B.: A time-stepping scheme for inelastic collisions. Numerical handling of the nonoverlapping constraint. Numer. Math. 102, 649–679 (2006)

Monteiro Marques, M.D.P.: Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction. Birkhäuser, Basel (1993)

Moreau, J.-J.: Liaisons unilatérales sans frottement et chocs inélastiques. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 296, 1473–1476 (1983)

Moreau, J.-J.: Standard inelastic shocks and the dynamics of unilateral constraints. In: Del Piero, G., Maceri, F. (eds.) Unilateral Problems in Structural Analysis, pp. 173–221. Springer, New York (1985)

Moreau, J.-J.: Bounded variation in time. In: Moreau, J.J., Panagiotopoulos, P.D., Strang, G. (eds.) Topics in Nonsmooth Mechanics, pp. 1–74. Birkhäuser, Basel (1988)

Moreau, J.-J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, pp. 1–82. Spinger-Verlag, New York (1988)

Paoli, L.: An existence result for non-smooth vibro-impact problems. J. Differ. Equ. 211, 247–281 (2005)

Paoli, L.: Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints. I: the inelastic impact case. Arch. Ration. Mech. Anal. 198, 457–503 (2010)

Paoli, L.: A position-based time-stepping algorithm for vibro-impact problems with a moving set of constraints. Confluentes Math. 3, 263–290 (2011)

Paoli, L.: A proximal-like algorithm for vibro-impact problems with a non-smooth set of constraints. In: Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 8th AIMS Conference. Suppl. Vol. II, pp. 1186–1195 (2011)

Paoli, L.: Existence and approximation for vibro-impact problems with a time-dependent set of constraints. Math. Comput. Simul. 118, 302–309 (2015)

Paoli, L.: Mathematical aspects of vibro-impact problems. In: Advanced Topics in Nonsmooth Dynamics, pp. 135–189. Springer, Cham (2018)

Paoli, L., Schatzman, M.: Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d’énergie. RAIRO Modél. Math. Anal. Numér. 27, 673–717 (1993)

Paoli, L., Schatzman, M.: Schéma numérique pour un modèle de vibrations avec contraintes unilatérales et perte d’énergie aux impacts, en dimension finie. C. R. Acad. Sci., Sér. 1 Math. 317, 211–215 (1993)

Paoli, L., Schatzman, M.: A numerical scheme for impact problems. I. The one-dimensional case. SIAM J. Numer. Anal. 40, 702–733 (2002)

Paoli, L., Schatzman, M.: A numerical scheme for impact problems. II. The multidimensional case. SIAM J. Numer. Anal. 40, 734–768 (2002)

Schatzman, M.: Penalty method for impact in generalized coordinates. Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci. 359, 2429–2446 (2001)