Existence of multiple solutions to an elliptic problem with measure data

Amita Soni1, Debajyoti Choudhuri1
1Department of Mathematics, National Institute of Technology Rourkela, Rourkela, 769008, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Func. Anal. 14, 349–381 (1973)

Bachman, G., Narici, L.: Functional analysis(. Dover Publications, Mineola (1966)

Molica Bisci, G., Repovš, D., Servadei, R.: Nontrivial solutions of superlinear nonlocal problems. Forum Math 28(6), 1095–1110 (2016)

Boccardo, L., Gallouët, T.: Nonlinear elliptic equations with right hand side measures. Comm. Partial Differ. Equ. 17(3–4), 641–655 (1992)

Brezis, H., Marcus, M., Ponce, A.C.: Nonlinear elliptic equations with measures revisited. arXiv:1312.6495 [math.AP] (2013)

Chung, N.T., Minh, P.H., Nga, T.H.: Multiple solutions for $$p$$ p -Laplacian problems involving general subcritical growth in bounded domains. Electon. J. Differ. Equ. 78, 1–12 (2016)

Costa, D.G., Magalhães, C.A.: Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal. 23, 1401–1412 (1994)

Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

Ercole, G., Pereira, G.A.: Fractional Sobolev inequalities associated with singular problems. Math. Nachr. https://doi.org/10.1002/mana.201700302 (2017)

Evans, L.C.: Partial differential equations. Graduate studies in mathematics, vol 19. American Mathematical Society (2009)

Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J.L.: An $$L^1$$ L 1 theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa 22, 241–273 (1995)

Ge, B., Zhou, Q., Zu, L.: Positive solutions for nonlinear elliptic problems of p-Laplacian type on $$\mathbb{R}^{N}$$ R N without (AR) condition. Nonlinear Anal. 21, 99–109 (2015)

Giri, R.K., Choudhuri, D.: A problem involving the $$p$$ p -Laplacian operator. Differ. Equ. Appl. 9(2), 171–181 (2017)

Iturriaga, L., Lorca, S., Ubilla, P.: A quasilinear problem without the Ambrosetti-Rabinowitz type condition. Proc. R. Soc. Edinb. Sect. A 140, 391–398 (2010)

Kesavan, S.: Topics in functional analysis and applications. New Age International Pvt. Ltd. (2003)

Kristály, A., Lisei, H., Varga, C.: Multiple solutions for $$p$$ p -Laplacian type equations. Nonlinear Anal. TMA 68, 1375–1381 (2008)

Lan, Y.Y.: Existence of solutions to $$p$$ p -Laplacian equations involving general subcritical growth. Electr. J. Diff. Equ. 2014(151), 1–9 (2014)

Lan, Y.Y., Tang, C.L.: Existence of solutions to a class of semilinear elliptic equations involving general subcritical growth. Proc. R. Soc. Edinb. Sect. A 144, 809–818 (2014)

Liu, S.: On superlinear problems without Ambrosetti–Rabinowitz condition. Nonlinear Anal. 73(3), 788–795 (2010)

Li, G., Yang, C.: The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $$p$$ p -Laplacian type without the Ambrosetti–Rabinowitz condition. Nonlinear Anal. TMA 72, 4602–4613 (2010)

Miyagaki, O.H., Souto, M.A.: Superlinear problems without Ambrosetti and Rabinowitz growth condition. J. Diff. Equ. 245, 3628–3638 (2008)

Schechter, M.: The use of cerami sequences in critical point theory. Abstract and applied analysis (2007) (Article ID 58948)

Sun, M.Z.: Multiple solutions of a superlinear $$p$$ p -Laplacian equation without AR-condition. Appl. Anal. 89, 325–336 (2010)

Wang, J., Tang, C.L.: Existence and multiplicity of solutions for a class of superlinear $$p$$ p -Laplacian equations. Bound. Value Probl. 2006, 1–12 (2006)

Xiang, M., Zhang, B.: Degenerate Kirchhoff problems involving the fractional $$p$$ p -Laplacian without the (AR) condition. Complex Var. Elliptic Equ. 60(9), 1277–1287 (2015)