Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory
Tóm tắt
We study a perturbed semilinear problem with Neumann boundary condition
\[ \cases{ -\varepsilon^2\Delta u+u=u^p & {\rm in} \Omega \cr &\cr u>0 & {\rm in} \Omega\cr &\cr {{\partial u}\over{\partial\nu}}=0& {\rm in} \partial\Omega,\cr} \]
where
$\Omega$
is a bounded smooth domain of
${mathbb{R}}^N$
,
$N\ge2$
,
$\varepsilon>0$
,
$1 < p < {{N+2}\over{N-2}}$
if
$N\ge3$
or
$p>1$
if
$N=2$
and
$\nu$
is the unit outward normal at the boundary of
$\Omega$
. We show that for any fixed positive integer K any “suitable” critical point
$(x_0^1,\dots,x_0^K)$
of the function
\begin{eqnarray*} \lefteqn{\varphi_K(x^1,\dots,x^K)} &=& \min\left\{{\rm dist}(x^i,{\partial\Omega}),{|x^j-x^l|\over2} \mid i,j,l=1.\dots,K, j\ne l\right\} \end{eqnarray*}
generates a family of multiple interior spike solutions, whose local maximum points
$x_\varepsilon^1,\dots,x_\varepsilon^K$
tend to
$x_0^1,\dots,x_0^K$
as
$\varepsilon$
tends to zero.