Existence of common fixed point in Kannan F-contractive mappings in quasi-partial b-metric space with an application
Tóm tắt
The purpose of this study is to demonstrate results on fixed point theory in quasi-partial b-metric space recognizing a new type of mapping, which is a blend of F-contraction and Kannan contraction, and to establish the fixed point results in F-expanding type mappings. Additionally, the obtained results are the application of the contractive mappings to functional equations. Furthermore, Mathematica software is used to demonstrate the 3D shapes of the examples discussed here.
Tài liệu tham khảo
Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 3(84), 133–181 (1922)
Browder, F.E., Petryshyn, W.V.: The solution by iteration of non-linear functional equations in Banach spaces. Bull. Am. Math. Soc. 72, 571–575 (1966)
Hu, T.K.: On a fixed-point theorem for metric spaces. Am. Math. Mon. 74, 436–437 (1967)
Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 10, 71–76 (1968)
Bakhtin, I.A.: The contraction mapping principle in almost metric spaces. Funct. Anal. 30, 26–37 (1989)
Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1(1), 5–11 (1993)
Matthews, S.G.: Partial metric topology, general topology and its applications. Ann. N.Y. Acad. Sci. 728, 183–197 (1994)
Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012(1), 94 (2012). https://doi.org/10.1186/1687-1812-2012-94
Piri, H., Kumam, P.: Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014(1), 210 (2014). https://doi.org/10.1186/1687-1812-2014-210
Ahmad, J., Al-Rawashdeh, A., Azam, A.: New fixed point theorems for generalized F-contractions in complete metric spaces. Fixed Point Theory Appl. 2015(1), 80 (2015). https://doi.org/10.1186/s13663-015-0333-2
Kumar, S., Luambano, S.: On some fixed point theorems for multivalued F-contractions in partial metric spaces. Demonstr. Math. 54, 151–161 (2021)
Luambano, S., Kumar, S., Kakiko, G.: Fixed point theorem for F-contraction mappings in partial metric spaces. Lobachevskii J. Math. 40(2), 183–188 (2019). https://doi.org/10.1134/S1995080219020094
Karapinar, E., Erhan, E.M., Ali, Ö.: Fixed point theorems on quasi-partial metric spaces. Math. Comput. Model. 57, 2442–2448 (2013)
Gupta, A., Gautam, P.: Quasi partial b-metric spaces and some related fixed point theorems. Fixed Point Theory Appl. 2015(1), 18 (2015)
Gupta, A., Gautam, P.: Topological structure of quasi-partial b-metric spaces. Int. J. Pure Appl. Math. Sci. 17, 8–88 (2016)
Gautam, P., Mishra, V.N., Negi, K.: Common fixed point theorems for cyclic Reich-Rus-Ćirić contraction mappings in quasi-partial b-metric space. Ann. Fuzzy Math. Inform. 20(2), 149–156 (2020). https://doi.org/10.30948/afmi.2020.20.2.149
Gautam, P., Mishra, V.N., Ali, R., Verma, S.: Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space. AIMS Math. 6(2), 1727–1742 (2021)
Mishra, V.N., Sánchez Ruiz, L.M., Gautam, P., Verma, S.: Interpolative Reich–Rus–Ćirić and Hardy–Rogers contraction on quasi-partial b-metric space and related fixed point results. Mathematics 8(9), 1–11 (2020)
Gautam, P., Sánchez Ruiz, L.M., Verma, S.: Fixed point of interpolative rus–Reich–Ćirić contraction mapping on rectangular quasi-partial b-metric space. Symmetry 13(1), 2–16 (2021)
Gautam, P., Verma, S.: Fixed point via implicit contraction mapping on quasi-partial b-metric space. J. Anal. 29, 1251–1263 (2021). https://doi.org/10.1007/s41478-021-00309-6
Gautam, P., Sánchez Ruiz, L.M., Verma, S., Gupta, G.: Common fixed point results on generalized weak compatible mapping in quasi-partial b-metric space. J. Math. 2021, 5526801 (2021). https://doi.org/10.1155/2021/5526801
Gautam, P., Verma, S., De La Sen, M., Sundriyal, S.: Fixed point results for ω-interpolative Chatterjea type contraction in quasi-partial b-metric space. Int. J. Anal. Appl. 19(2), 280–287 (2021)
Gautam, P., Verma, S., Gulati, S.: ω-Interpolative Ćirić-Reich-Rus type contractions on quasi-partial b-metric space. Filomat (Accepted)
Debnath, P., Konwar, N., Radenović, S.: Metric Fixed Point Theory, Applications in Science, Engineering and Behavioural Scince. Springer, Singapore (2021)
Todorčević, V.: Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics. Springer, Switzerland (2019)
Kirk, V., Shahzad, N.: Fixed Point Theory in Distance Spaces. Springer, Switzerland (2014)
Vujaković, J., Radenović, S.: On some F-contraction of Piri-Kumam-Dung-type mappings in metric spaces. Vojnotehnički glasnik/Military Technical Courier 68(4), 697–714 (2020). https://doi.org/10.5937/vojtehg68-27385
Goŕnicki, J.: Fixed point theorems for F-expanding mappings. Fixed Point Theory Appl. 2017(1), 9 (2017). https://doi.org/10.1186/s13663-017-0602-3
Goswami, N., Haokip, N., Mishra, V.N.: F-contractive type mappings in b-metric spaces and some related fixed point results. Fixed Point Theory Appl. 2019, 13 (2019). https://doi.org/10.1186/s13663-019-0663-6
Wangwe, L., Kumar, S.: A common fixed point theorem for generalised-Kannan mapping in metric space with applications. Abstr. Appl. Anal. 2021, 6619877 (2021)
Cosentino, M., Jleli, M., Samet, B., Vetro, C.: Solvability of integrodifferential problems via fixed point theory in b-metric spaces. Fixed Point Theory Appl. 2015(1), 70 (2015). https://doi.org/10.1186/s13663-015-0317-2
Popescu, O., Stan, G.: Two fixed point theorems concerning F-contraction in complete metric spaces. Symmetry 12(1), 58 (2020). https://doi.org/10.3390/sym12010058
Mehravaran, H., Khanehgir, M., Allahyari, R.: Fixed point theorems for generalized F-contractions and generalized F-Suzuki-contractions in complete dislocated Sb-metric spaces. Int. J. Anal. Appl. 17(5), 734–751 (2019)
Ali, M., Kamran, T.: Multivalued F-contractions and related fixed point theorems with an application. Filomat 30(14), 3779–3793 (2021). http://www.jstor.org/stable/24899466
Ozturk, V.: Integral type F-contractions in partial metric spaces. J. Funct. Spaces (2019). https://doi.org/10.1155/2019/5193862
Garai, H., Senapati, T., Dey, L.K.: A study on Kannan type contractive mapping (2017). arXiv:1707.06383v1 [math.FA]