Existence of capacity solution for a perturbed nonlinear coupled system

Mohialdin Bahari1, R. Elarabi1, M. Rhoudaf1
1Laboratoire de Mathematiques et leurs Applications, Équipe: EDP et Calcul Scientifique, Université Moulay Ismail, Faculte des Sciences, Meknès, Morocco

Tóm tắt

Từ khóa


Tài liệu tham khảo

Antontsev, S.N., Chipot, M.: The thermistor problem: existence, smoothness, uniqueness, blowup. SIAM J. Math. Anal. 25, 1128–1156 (1994)

Allegretto, W., Lin, Y., Ma, S.: Existence and long time behaviour of solutions to obstacle thermistor equations. Discrete Contin. Dynam. Syst. Ser. A (DCDS-A) 8(3), 757–780 (2002)

Boccardo, L., DallAglio, A., Gallouët, T., Orsina, L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147, 237–258 (1997)

Bénilan, Ph, Boccardo, L., Gallouëtt, Th, Gariepy, R., Pierre, M., Vázquez, J.L.: An L1 theory of existence and uniqueness of solutions of nonlinear elliptic equations Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22, 241–273 (1995)

González Montesinos, M. T., and Ortegón Gallego, F.: The evolution thermistor problem with degenerate thermal conductivity. Commun. Pure Appl. Anal. 1(3), 313–325 (2002)

González Montesinos, M.T., Ortegón Gallego, F.: Existence of a capacity solution to a coupled nonlinear parabolic-elliptic system. Commun. Pure Appl. Anal., 6(1), 23–42 (2007)

Howinson, S.D., Rodrigues, J.F., Shillor, M.: Stationary solutions to the thermistor Problem. J. Math. Anal. Appl. 174, 573–588 (1993)

Landes, R.: On the existence of weak solutions for quasilinear parabolic initial-boundary value problems. Proc. R. Soc. Edinb. Sect. A89, 217–237 (1981)

Landes, R., Mustonen, V.: A strongly nonlinear parabolic initial boundary value problem. Ark. Mat. 25, 29–40 (1987)

Simon, J.: Compact sets in the space Lp(0, T;B). Ann. Mat. Pura Appl. 146, 65–96 (1987)

Xu, X.: A strongly degenerate system involving an equation of parabolic type and an equation of elliptic type. Commun. Partial Differ. Equ. 18, 199–213 (1993)

Xu, X.: A degenerate Stefan-like problem with Joule’s heating. SIAM J. Math. Anal. 23, 1417–1438 (1992)

Xu, X.: The thermistor problem with conductivity vanishing for large temperature. Proc. R. Soc. Edinb. Sect. A 127, 1–21 (1994)

Xu, X.: On the existence of bounded temperature in the thermistor problem with degeneracy. Nonlinear Anal.: T. M. A. 42, 199–213 (2000)