Existence of cancer stem cells in hepatocellular carcinoma: myth or reality?

Hepatology International - Tập 11 Số 2 - Trang 143-147 - 2017
Keigo Machida1
1Southern California Research Center for ALPD and Cirrhosis, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mani SA, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704–715

Joseph NM, et al. The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell 2008;13:129–140. doi: 10.1016/j.ccr.2008.01.003

Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105–111. doi: 10.1038/35102167

Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 2012;21:283–296. doi: 10.1016/j.ccr.2012.03.003

Kim J, et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 2010;143:313–324. doi: 10.1016/j.cell.2010.09.010 (S0092-8674(10)01058-5[pii])

Ikushima H, et al. Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem 2011;286:41434–41441. doi: 10.1074/jbc.M111.300863 (M111.300863[pii])

Chen J, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 2012;488:522–526. doi: 10.1038/nature11287

Kiel MJ, et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 2007;449:238–242

Chen CL, et al. Reciprocal regulation by TLR4 and TGF-beta in tumor-initiating stem-like cells. J Clin Invest 2013;123:2832–2849. doi: 10.1172/JCI65859

Ma S, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007;132:2542–2556

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983–3988

Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730–737

Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005;65:10946–10951

Craig CE, et al. The histopathology of regeneration in massive hepatic necrosis. Semin Liver Dis 2004;24:49–64

Yang ZF, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 2008;13:153–166

Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 2008;27:1749–1758

Wurmbach E, et al. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology 2007;45:938–947

Yeoh GC, et al. Opposing roles of gp130-mediated STAT-3 and ERK-1/2 signaling in liver progenitor cell migration and proliferation. Hepatology 2007;45:486–494

Dando JS, et al. Notch/Delta4 interaction in human embryonic liver CD34+ CD38− cells: positive influence on BFU-E production and LTC-IC potential maintenance. Stem Cells 2005;23:550–560

Sicklick JK, et al. Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis 2006;27:748–757

Sicklick JK, et al. Hedgehog signaling maintains resident hepatic progenitors throughout life. Am J Physiol Gastrointest Liver Physiol 2006;290:G859–G870

Kitisin K, et al. Disruption of transforming growth factor-beta signaling through beta-spectrin ELF leads to hepatocellular cancer through cyclin D1 activation. Oncogene 2007;26:7103–7110

Nguyen LN, et al. Transforming growth factor-beta differentially regulates oval cell and hepatocyte proliferation. Hepatology 2007;45:31–41

Ho JW, et al. Significance of circulating endothelial progenitor cells in hepatocellular carcinoma. Hepatology 2006;44:836–843

Singh SK, et al. Identification of human brain tumour initiating cells. Nature 2004;432:396–401

Shmelkov SV, St Clair R, Lyden D, Rafii S. AC133/CD133/Prominin-1. Int J Biochem Cell Biol 2005;37:715–719

Rountree CB, Senadheera S, Mato JM, Crooks GM, Lu SC. Expansion of liver cancer stem cells during aging in methionine adenosyltransferase 1A-deficient mice. Hepatology 2008;47:1288–1297

Tirnitz-Parker JE, Tonkin JN, Knight B, Olynyk JK, Yeoh GC. Isolation, culture and immortalisation of hepatic oval cells from adult mice fed a choline-deficient, ethionine-supplemented diet. Int J Biochem Cell Biol 2007;39:2226–2239

Libbrecht L, et al. Hepatic progenitor cells in hepatocellular adenomas. Am J Surg Pathol 2001;25:1388–1396

Lapidot T, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994;367:645–648

Chiba T, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 2006;44:240–251

Crippin JS, McCashland T, Terrault N, Sheiner P, Charlton MR. A pilot study of the tolerability and efficacy of antiviral therapy in hepatitis C virus-infected patients awaiting liver transplantation. Liver Transpl 2002;8:350–355

Okuda K. Hepatocellular carcinoma. J Hepatol 2000;32:225–237

Okuda M, et al. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 2002;122:366–375

Yao F, Terrault N. Hepatitis C and hepatocellular carcinoma. Curr Treat Options Oncol 2001;2:473–483

Oshita M, et al. Increased serum hepatitis C virus RNA levels among alcoholic patients with chronic hepatitis C. Hepatology 1994;20:1115–1120

Feldman DE, Chen C, Punj V, Tsukamoto H, Machida K. Pluripotency factor-mediated expression of the leptin receptor (OB-R) links obesity to oncogenesis through tumor-initiating stem cells. Proc Natl Acad Sci U S A 2012;109:829–834

Schepers AG, et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 2012;337:730–735. doi: 10.1126/science.1224676

Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C. Defining the mode of tumour growth by clonal analysis. Nature 2012;488:527–530. doi: 10.1038/nature11344

Chen CL, et al. NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab 2016;23:206–219. doi: 10.1016/j.cmet.2015.12.004

Uthaya Kumar DB, et al. TLR4 signaling via NANOG cooperates with STAT3 to activate Twist1 and promote formation of tumor-initiating stem-like cells in livers of mice. Gastroenterology 2016;150:707–719. doi: 10.1053/j.gastro.2015.11.002