Existence of a solution to a nonlocal Schrödinger system problem in fractional modular spaces

Hamza El-Houari1, Lalla Saâdia Chadli1, H. Moussa1
1Faculté des Sciences et Techniques, Laboratoire de recherche “Mathématiques Appliquées et Calcul Scientifique”, Béni Mellal, Maroc

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adams, R.A., Fournier, J.F.: Sobolev Spaces, Second Edition, Pure and Applied Mathematics. Elsevier/Academic Press, Amsterdam (2003)

Alberico, A., Cianchi, A., Pick, L., Slavíková, L.: Fractional Orlicz-Sobolev embeddings. J. Math. Pures Appl. 149, 216–253 (2021)

Ali, K.B., et al.: On a nonlocal fractional p (.,.)-Laplacian problem with competing nonlinearities. Complex Anal. Oper. Theory 13(3), 1377–1399 (2019)

Azroul, E., Benkirane, A., Srati, M.: Nonlocal eigenvalue type problem in fractional Orlicz-Sobolev space: Nonlocal eigenvalue type problem. Adv. Oper. Theory 5, 1599–1617 (2020)

Bahrouni, A., Bahrouni, S., Xiang, M.: On a class of nonvariational problems in fractional Orlicz-Sobolev spaces. Nonlinear Anal. 190, 111595 (2020)

Bahrouni, S., Ounaies, H., Tavares, L.S.: Basic results of fractional Orlicz-Sobolev space and applications to non-local problems. Topol. Methods Nonlinear Anal. 55(2), 681–695 (2020)

Bahrouni, S., Ounaies, H.: Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems. Discrete Contin. Dyn. Syst. 40(5), 2917–2944 (2020)

Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity. Nonlinear Anal. Theory Methods Appl. 7(9), 981–1012 (1983)

Bonder, J.F., Salort, A.M.: Fractional order Orlicz-Sobolev spaces. J. Funct. Anal. 277(2), 333–367 (2019)

Boumazourh, A., Srati, M.: Leray-Schauder’s solution for a nonlocal problem in a fractional Orlicz-Sobolev space. Moroccan J. Pure Appl. Anal. (MJPAA) 10, 42–52 (2020)

Brezis, H.: Analyse Fonctionnelle: Théorie et Applications. Masson, Paris (1992)

Caffarelli, L., Roquejoffre, J.M., Sire, Y.: Variational problems for free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12(5), 1151–1179 (2010)

Caffarelli, L.A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008)

Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245–1260 (2007)

EL-Houari, H., Chadli, L.S., Hicham, M.: Existence of solution to M-Kirchhoff system type. In: 2021 7th International Conference on Optimization and Applications (ICOA), IEEE, pp. 1–6 (2021)

Fukagai, N., Ito, M., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on RN. Funkc. Ekvacioj 49, 235–267 (2006)

Kourogenis, N.C., Papageorgiou, N.S.: Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Aust. Math. Soc. 69(2), 245–271 (2000)

Krasnosel’skii, M.A., Rutickii, Y.B.: Convex Functions and Orlicz Spaces, vol. 9. Noordhoff, Groningen (1961)

Kufner, A., John, O., Fucik, S.: Function Spaces. Noordhoff, Leyden (2013)

Lamperti, J.: On the isometries of certain function-spaces. Pac. J. Math. 8, 459–466 (1958)

Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229(2), 743–767 (2006)

Menyuk, C.R.: Nonlinear pulse propagation in birefringent optical fibers. IEEE J. Quant. Electron. 23, 174–176 (1987)

Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: Regional Conference Series in Mathematics 65. American Mathematical Society, Providence, RI (1986)

Severo, U., da Silva, E.: On the existence of standing wave solutions for a class of quasilinear Schrödinger systems. J. Math. Anal. Appl. 412(2), 763–775 (2014)

Xiang, M., Zhang, B., Wei, Z.: Existence of solutions to a class of quasilinear Schrödinger systems involving the Fractional p-Laplacian. Electron. J. Qual. Theory Differ. Equ. 107, 1–15 (2016)