Existence of a Global Attractor for the Heat Equation with Degenerate Memory

Springer Science and Business Media LLC - Tập 35 - Trang 845-864 - 2021
J. C. O. Faria1, C. M. Webler1
1Department of Mathematics, State University of Maringá, Maringá, Brazil

Tóm tắt

We analyze the long-time behavior of the semigroup S(t) generated by a heat equation with degenerate past history and a nonlinear heat supply posed in a three dimensional bounded domain $$\Omega $$ . Assuming that the degeneracy occurs in a positive measure subset of $$\Omega $$ , we prove the existence and regularity of the global attractor associated to this semigroup.

Tài liệu tham khảo

Alabau-Boussouira, F., Cannarsa, P., Fragnelli, G.: Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ. 6, 161–204 (2006) Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces. Noordhoff International Publishing, Groningen (1976) Boutaayamou, I., Fragnelli, G., Maniar, L.: Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions. J. d’Anal. Math. 135, 1–35 (2018) Campiti, M., Metafune, G., Pallara, D.: Degenerate self-adjoint evolution equations on the unit interval. Semigroup Forum 57, 1–36 (1998) Cannarsa, P., Martinez, P., Vancostenoble, J.: Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim. 47, 1–19 (2008) Cannarsa, P., Tort, J., Yamamoto, M.: Unique continuation and approximate controllability for a degenerate parabolic equation. Appl. Anal. 91, 1409–1425 (2012) Cavalcanti, M.M., Domingos Cavalcanti, V.N., Jorge Silva, M.A., de Souza Franco, A.Y.: Exponential stability for the wave model with localized memory in a past history framework. J. Differ. Equ. 264, 6535–6584 (2018) Chepyzhov, V.V., Mainini, E., Pata, V.: Stability of abstract linear semigroups arising from heat conduction with memory. Asymptot. Anal. 50(3–4), 269–291 (2006) Chueshov, I., Eller, M., Lasiecka, I.: On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Commun. PDE 27, 1901–1951 (2002) Conti, M., Pata, V., Squassina, M.: Singular limit of differential systems with memory. Indiana Univ. Math. J. 55, 169–215 (2006) Conti, M., Pata, V.: On the regularity of global attractors. Discrete Contin. Dyn. Syst. 25(4), 1209–1217 (2009) Conti, M., Marchini, E.M., Pata, V.: Nonclassical diffusion with memory. Math. Methods Appl. Sci. 38, 948–958 (2015) Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37, 297–308 (1970) Faria, J.C.O.: Carleman estimates and observability inequalities for a class of problems ruled by parabolic equations with interior degenaracy. Appl. Math. Optim. (2020). https://doi.org/10.1007/s00245-019-09651-5 Fragnelli, G., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: Generators with interior degeneracy on spaces of \(L^2\) type. Electron J. Differ. Equ. 189, 1–30 (2012) Fragnelli, G., Mugnai, D.: Carleman estimates and observability inequalities for parabolic equation with interior degeneracy. Adv. Nonlinear Anal. 2, 339–378 (2013) Fragnelli, G., Mugnai, D.: Carleman estimates, observability inequalities and null controlability for interior degenerate non smooth parabolic equations. American Mathematical Society, Providence (2016) Gao, H., Li, L., Liu, Z.: Stability of degenerate heat equation in non-cylindrical/cylindrical domain. Z. Angew. Math. Phys. 70(14), 1–17 (2019). https://doi.org/10.1007/s00033-019-1166-3 Giorgi, C., Marzocchi, A., Pata, V.: Asymptotic behavior of a semilinear problem in heat conduction with memory. Nonlinear Differ. Equ. Appl. 5, 333–354 (1998) Giorgi, C., Marzocchi, A., Pata, V.: Uniform attractors for a non-autonomous semilinear heat equation with memory. Quart. Appl. Math. 58, 661–683 (2000) Giorgi, C., Naso, M.G., Pata, V.: Exponential stability in linear heat conduction with memory: a semigroup approach. Commun. Appl. Anal. 5, 121–134 (2001) Giorgi, C., Pata, V.: Asymptotic behavior of a nonlinear hyperbolic heat equation with memory. NoDEA Nonlinear Differ. Equ. Appl. 8, 157–171 (2001) Grasselli, M., Pata, V.: A reaction-diffusion equation with memory. Discrete Contin. Dyn. Syst. 15, 1079–1088 (2006) Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31, 113–126 (1968) Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications vol I. In: Die Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York (1972) Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society, Providence (1997) Temam, R.: Infinit Dimensional Dynamical System in Mechanichs and Physics. Springer, New York (1997) Wang, C.: Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete Contin. Dyn. Syst. 36, 1041–1060 (2016) Wang, X., Duan, F., Hu, D.: Attractors for a class of abstract evolution equations with fading memory. Math. Probl. Eng. Article ID 1410408, 16 pages (2017)