Existence of Kirillov–Reshetikhin crystals for near adjoint nodes in exceptional types
Tài liệu tham khảo
Biswal, 2020, Existence of Kirillov–Reshetikhin crystals for multiplicity free nodes, Publ. Res. Inst. Math. Sci., 56, 761, 10.4171/PRIMS/56-4-4
Chari, 1994
Di Francesco, 2008, Proof of the combinatorial Kirillov-Reshetikhin conjecture, Int. Math. Res. Not. (7), 57
Hernandez, 2006, The Kirillov-Reshetikhin conjecture and solutions of T-systems, J. Reine Angew. Math., 596, 63
Hernandez, 2010, Kirillov–Reshetikhin conjecture: the general case, Int. Math. Res. Not., 1, 149
Hatayama, 1999, Remarks on fermionic formula, vol. 248, 243
Hatayama, 2002, Paths, crystals and fermionic formulae, vol. 23, 205
Kac, 1990
Kashiwara, 1991, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J., 63, 465, 10.1215/S0012-7094-91-06321-0
Kashiwara, 1994, Crystal bases of modified quantized enveloping algebra, Duke Math. J., 73, 383, 10.1215/S0012-7094-94-07317-1
Kashiwara, 2002, On level-zero representations of quantized affine algebras, Duke Math. J., 112, 117, 10.1215/S0012-9074-02-11214-9
Kang, 1992, Perfect crystals of quantum affine Lie algebras, Duke Math. J., 68, 499, 10.1215/S0012-7094-92-06821-9
Kleber, 1998
Lusztig, 1990, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Am. Math. Soc., 3, 257
Lusztig, 1992, Canonical bases in tensor products, Proc. Natl. Acad. Sci. USA, 89, 8177, 10.1073/pnas.89.17.8177
Lusztig, 1993, Introduction to Quantum Groups, vol. 110
Nakajima, 2003, t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, Represent. Theory, 7, 259, 10.1090/S1088-4165-03-00164-X
Nakajima, 2004, Extremal weight modules of quantum affine algebras, vol. 40, 343
Naoi, 2018, Existence of Kirillov–Reshetikhin crystals of type G2(1) and D4(3), J. Algebra, 512, 47, 10.1016/j.jalgebra.2018.06.029
Okado, 2008, Existence of Kirillov-Reshetikhin crystals for nonexceptional types, Represent. Theory, 12, 186, 10.1090/S1088-4165-08-00329-4
2019
Scrimshaw, 2020, Uniform description of the rigged configuration bijection, Sel. Math. New Ser., 26, 10.1007/s00029-020-00564-8