Existence for singular doubly nonlinear systems of porous medium type with time dependent boundary values
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akagi, G., Stefanelli, U.: Doubly nonlinear equations as convex minimization. SIAM J. Math. Anal. 46(3), 1922–1945 (2014)
Alt, H., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183(3), 311–341 (1983)
Aronson, D.G.: Regularity properties of flows through porous media: the interface. Arch. Ration. Mech. Anal. 37, 1–10 (1970)
Barenblatt, G.I.: On self-similar solutions of the Cauchy problem for a nonlinear parabolic equation of unsteady filtration of a gas in a porous medium (Russian). Prikl. Mat. Meh. 20, 761–763 (1956)
Barenblatt, G.I.: On some unsteady motions of a liquid and gas in a porous medium (Russian). Akad. Nauk SSSR. Prikl. Mat. Meh. 16, 67–78 (1952)
Bernis, F.: Existence results for doubly nonlinear higher order parabolic equations on unbounded domains. Math. Ann. 279(3), 373–394 (1988)
Bögelein, V., Duzaar, F., Kinnunen, J., Scheven, C.: Higher integrability for doubly nonlinear parabolic systems (2018). https://arxiv.org/abs/1810.06039
Bögelein, V., Duzaar, F., Korte, R., Scheven, C.: The higher integrability of weak solutions of porous medium systems. Adv. Nonlinear Anal. 8(1), 1004–1034 (2019)
Bögelein, V., Duzaar, F., Marcellini, P.: A time dependent variational approach to image restoration. SIAM J. Imaging Sci. 8(2), 968–1006 (2015)
Bögelein, V., Duzaar, F., Marcellini, P.: Existence of evolutionary variational solutions via the calculus of variations. J. Differ. Equ. 256, 3912–3942 (2014)
Bögelein, V., Duzaar, F., Marcellini, P.: Parabolic systems with $$p, q$$-growth: a variational approach. Arch. Ration. Mech. Anal. 210(1), 219–267 (2013)
Bögelein, V., Duzaar, F., Marcellini, P., Scheven, C.: A variational approach to doubly nonlinear equations. Rend. Lincei Mat. Appl. 29, 739–772 (2018)
Bögelein, V., Duzaar, F., Marcellini, P., Scheven, C.: Doubly nonlinear equations of porous medium type. Arch. Ration. Mech. Anal. 229, 503–545 (2018)
Bögelein, V., Duzaar, F., Scheven, C.: The obstacle problem for parabolic minimizers. J. Evol. Equ. 17(4), 1273–1310 (2017)
Bögelein, V., Lukkari, T., Scheven, C.: The obstacle problem for the porous medium equation. Math. Ann. 363(1–2), 455–499 (2015)
Dal Passo, R., Luckhaus, S.: A degenerate diffusion problem not in divergence form. J. Differ. Equ. 69(1), 1–14 (1987)
Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks in Mathematics, revised edn. Chapman and Hall/CRC, Boca Raton (2015)
Grange, O., Mignot, F.: Sur la résolution d‘une équation et d‘une inéquation paraboliques non linéaires. (French). J. Funct. Anal. 11, 77–92 (1972)
Ivanov, A.V.: Regularity for doubly nonlinear parabolic equations. J. Math. Sci. 83(1), 22–37 (1997)
Ivanov, A.V., Mkrtychyan, P.Z.: On the existence of Hölder-continuous generalized solutions of the first boundary value problem for quasilinear doubly degenerate parabolic equations. J. Sov. Math. 62(3), 2725–2740 (1992)
Ivanov, A.V., Mkrtychyan, P.Z., Jäger, W.: Existence and uniqueness of a regular solution of the Cauchy–Dirichlet problem for a class of doubly nonlinear parabolic equations. J. Sov. Math. 84(1), 845–855 (1997)
Ladyženskaja, O.A.: New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems. (Russian). Trudy Mat. Inst. Steklov. 102, 85–104 (1967)
Landes, R.: On the existence of weak solutions for quasilinear parabolic initial-boundary value problems. Proc. R. Soc. Edinb. Sect. A 89(3–4), 217–237 (1981)
Lichnewsky, A., Temam, R.: Pseudosolutions of the time-dependent minimal surface problem. J. Differ. Equ. 30(3), 340–364 (1978)
Marcellini, P.: Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscripta Math. 51, 1–28 (1985)
Naumann, J.: Einführung in die Theorie parabolischer Variationsungleichungen. vol. 64 of Teubner-Texte zur Mathematik. BSB B.G. Teubner Verlagsgesellschaft, Leipzig (1984)
Showalter, R., Walkington, N.J.: Diffusion of fluid in a fissured medium with microstructure. SIAM J. Math. Anal. 22(6), 1702–1722 (1991)