Existence conditions for symmetric generalized quasi-variational inclusion problems
Tóm tắt
In this paper, we establish an existence theorem by using the Kakutani-Fan-Glicksberg fixed-point theorem for a symmetric generalized quasi-variational inclusion problem in real locally convex Hausdorff topological vector spaces. Moreover, the closedness of the solution set for this problem is obtained. As special cases, we also derive the existence results for symmetric weak and strong quasi-equilibrium problems. The results presented in the paper improve and extend the main results in the literature. MSC:90B20, 49J40.
Tài liệu tham khảo
Ansari QH, Oettli W, Schiager D: A generalization of vectorial equilibria. Math. Methods Oper. Res. 1997, 46: 147–152. 10.1007/BF01217687
Ansari QH, Schaible S, Yao JC: System of generalized vector equilibrium problems with applications. J. Glob. Optim. 2002, 22: 3–16. 10.1023/A:1013857924393
Ansari QH, Konnov IV, Yao JC: On generalized vector equilibrium problems. Nonlinear Anal. TMA 2001, 47: 543–554. 10.1016/S0362-546X(01)00199-7
Long XJ, Huang NJ, Teo KL: Existence and stability of solutions for generalized strong vector quasi-equilibrium problems. Math. Comput. Model. 2008, 47: 445–451. 10.1016/j.mcm.2007.04.013
Plubtieng S, Sitthithakerngkiet K: On the existence result for system of generalized strong vector quasi-equilibrium problems. Fixed Point Theory Appl. 2011., 2011: Article ID 475121
Chen B, Huang NJ, Cho YJ: Symmetric strong vector quasiequilibrium problems in Hausdorff locally convex spaces. J. Inequal. Appl. 2011., 2011: Article ID 56
Hung NV: Sensitivity analysis for generalized quasi-variational relation problems in locally G -convex spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 158
Hung NV: Continuity of solutions for parametric generalized quasi-variational relation problems. Fixed Point Theory Appl. 2012., 2012: Article ID 102
Anh LQ, Khanh PQ: On the stability of the solution sets of general multivalued vector quasiequilibrium problems. J. Optim. Theory Appl. 2007, 135: 271–284. 10.1007/s10957-007-9250-9
Anh LQ, Khanh PQ: Existence conditions in symmetric multivalued vector quasiequilibrium problem. Control Cybern. 2008, 36: 519–530.
Fu JY: Symmetric vector quasiequilibrium problems. J. Math. Anal. Appl. 2003, 285: 708–713. 10.1016/S0022-247X(03)00479-7
Lin LJ, Liu YH: Existence theorems for systems of generalized vector quasiequilibrium problems and optimization problems. J. Optim. Theory Appl. 2006, 130: 461–475.
Kien BT, Huy NQ, Wong NC: On the solution existence of generalized vector quasi-equilibrium problems with discontinuous multifunctions. Taiwan. J. Math. 2009, 13: 757–775.
Liu QY, Long XJ, Huang NJ: Connectedness of the sets of weak efficient solutions for generalized vector equilibrium problems. Math. Slovaca 2012, 62: 123–136. 10.2478/s12175-011-0077-3
Long XJ, Peng JW: Connectedness and compactness of weak efficient solutions for vector equilibrium problems. Bull. Korean Math. Soc. 2011, 48: 1225–1233.
Long XJ, Huang YQ, Peng ZY: Optimality conditions for the Henig efficient solution of vector equilibrium problems with constraints. Optim. Lett. 2011, 5: 717–728. 10.1007/s11590-010-0241-7
Lin Z, Yang H, Yu J: On existence and essential components of the solution set for the system of vector quasiequilibrium problems. Nonlinear Anal. 2005, 63: 2445–2452. 10.1016/j.na.2005.03.049
Lin Z, Yu J: The existence of solutions for the system of generalized vector quasiequilibrium problems. Appl. Math. Lett. 2005, 18: 415–422. 10.1016/j.aml.2004.07.023
Song QQ, Wang LS: The existence of solutions for the system of vector quasiequilibrium problems in topological order spaces. Comput. Math. Appl. 2011, 62: 1979–1983. 10.1016/j.camwa.2011.06.041
Plubtieng S, Sitthithakerngkiet K: Existence result of generalized vector quasiequilibrium problems in locally G -convex spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 967515
Yang Y, Pu YJ: On the existence and essential components for solution set for system of strong vector quasiequilibrium problems. J. Glob. Optim. 2011. doi:10.1007/s10898–011–9830-y
Blum E, Oettli W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 1994, 63: 123–145.
Hou SH, Gong XH, Yang XM: Existence and stability of solutions for generalized Ky Fan inequality problems with trifunctions. J. Optim. Theory Appl. 2010, 146: 387–398. 10.1007/s10957-010-9656-7
Lin Z: Existence of solutions to the system of generalized implicit vector quasivariational inequality problems. Fixed Point Theory Appl. 2009., 2009: Article ID 654370
Balaj M, Lin LJ: Generalized variational relation problems with applications. J. Optim. Theory Appl. 2011, 148: 1–13. 10.1007/s10957-010-9741-y
Yu J: Essential weak efficient solution in multiobjective optimization problems. J. Math. Anal. Appl. 1992, 166: 230–235. 10.1016/0022-247X(92)90338-E
Berge C: Topological Spaces. Oliver and Boyd, London; 1963.
Luc DT: Theory of Vector Optimization: Lecture Notes in Economics and Mathematical Systems. Springer, Berlin; 1989.
Holmes RB: Geometric Functional Analysis and Its Application. Springer, New York; 1975.