Existence and uniqueness results for a class of p(x)-Kirchhoff-type problems with convection term and Neumann boundary data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbassi, A., Allalou, C., Kassidi, A.: Existence of weak solutions for nonlinear p-elliptic problem by topological degree. Nonlinear Dyn. Syst. Theory. 20(3), 229–241 (2020)
Abbassi, A., Allalou, C., Kassidi, A.: Existence results for some nonlinear elliptic equations via topological degree methods. J. Elliptic Parabol Equ. 7(1), 121–136 (2021)
Aboulaich, R., Meskine, D., Souissi, A.: New diffusion models in image processing. Comput. Math. Appl. 56, 874–882 (2008)
Acerbi, E., Mingione, G.: Regularity results for a class of functionals with nonstandard growth. Arch. Ration. Mech. Anal. 156, 121–140 (2001)
Antontsev, S., Shmarev, S.: A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions. Nonlinear Anal. 60, 515–545 (2005)
Berkovits, J.: Extension of the Leray-Schauder degree for abstract Hammerstein type mappings. J Differ. Equ. 234, 289–310 (2007)
Berkovits, J., Mustonen, V.: On the topological degree for mappings of monotone type. Nonlinear Anal. 10(12), 1373–1383 (1986)
Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)
Crandall, M., Rabinowitz, P.: Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems. Arch. Ration. Mech. Anal. 58, 207–218 (1975)
Dai, G., Liu, D.: Infinitely many positive solutions for a $$p(x)$$-Kirchhoff-type equation. J. Math. Anal. Appl. 359, 704–710 (2009)
Dai, G., Hao, R.: Existence of solutions for a $$p(x)$$-Kirchhoff-type equation. J. Math. Anal. Appl. 359, 275–284 (2009)
Dai, G., Ruyun, M.: Solutions for a $$p(x)$$-Kirchhoff type equation with Neumann boundary data. Nonlinear Anal. 12(5), 2666–2680 (2011)
DiBenedetto, E.: $$C^{1+\alpha }$$ local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7, 827–850 (1983)
El Ouaarabi, M., Allalou, C., Melliani, S.: Existence result for Neumann problems with $$p(x)$$-Laplacian-like operators in generalized Sobolev spaces. Rend. Circ. Mat. Palermo, II. Ser. https://doi.org/10.1007/s12215-022-00733-y
El Ouaarabi, M., Allalou, C., Melliani, S.: On a class of $$p(x)$$-Laplacian-like Dirichlet problem depending on three real parameters. Arab. J. Math. pp. 1–13 (2022)
El Ouaarabi, M., Allalou, C., Melliani, S.: Existence of weak solution for a class of $$p(x)$$-Laplacian problems depending on three real parameters with Dirichlet condition. Boletín de la Sociedad Matemática Mexicana 28(2), 1–16 (2022)
Fan, X.L., Zhao, D.: On the Spaces $$L^{p(x)}({\Omega} )$$ and $$W^{m, p(x)}({\Omega} )$$. J Math Anal Appl. 263, 424–446 (2001)
Fleckinger, J., Harrell, E., Thélin, F.D.: Boundary behavior and estimates for solutions of equations containing the p-Laplacian. Electron. J. Differ. Equ. 38, 1–19 (1999)
Henriques, E., Urbano, J.M.: Intrinsic scaling for PDEs with an exponential nonlinearity. Indiana Univ. Math. J. 55, 1701–1722 (2006)
Kim, I.S., Hong, S.J.: A topological degree for operators of generalized $$(S_{+})$$ type. Fixed Point Theory Appl. 1, 1–16 (2015)
Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
Kováčik, O., Rákosník, J.: On spaces $$L^{p(x)}$$ and $$W^{1, p(x)}$$. Czechoslovak Math. J. 41(4), 592–618 (1991)
Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions. Arch. Ration. Mech. Anal. 105, 267–284 (1989)
Ouaarabi, M.E., Abbassi, A., Allalou, C.: Existence result for a Dirichlet problem governed by nonlinear degenerate elliptic equation in weighted Sobolev spaces. J. Elliptic Parabol Equ. 7(1), 221–242 (2021)
Ouaarabi, M.E., Allalou, C., Abbassi, A.: On the Dirichlet Problem for some Nonlinear Degenerated Elliptic Equations with Weight. $$7^{\text{th}}$$ International Conference on Optimization and Applications (ICOA), 1–6 (2021)
Ouaarabi, M.E., Abbassi, A., Allalou, C.: Existence result for a general nonlinear degenerate elliptic problems with measure datum in weighted Sobolev spaces. Int. J. Opt. Appl. 1(2), 1–9 (2021)
Ouaarabi, M.E., Abbassi, A., Allalou, C.: Existence and uniqueness of weak solution in weighted Sobolev spaces for a class of nonlinear degenerate elliptic problems with measure data. Int. J. Nonlinear Anal. Appl. 13(1), 2635–2653 (2021)
Ragusa, M.A.: On weak solutions of ultraparabolic equations. Nonlinear Analysis: Theory, Methods & Applications 47(1), 503–511 (2001)
Ragusa, M.A., Razani, A., Safari, F.: Existence of radial solutions for a $$p(x)$$-Laplacian Dirichlet problem. Advances in Difference Equations 2021(1), 1–14 (2021)
Rajagopal, K. R., Ru̇zicka, M.: Mathematical modeling of electrorheological materials. Continuum Mech. Thermodyn. 13(1), 59–78 (2001)
Razani, A.: Two weak solutions for fully nonlinear Kirchhoff-type problem. Filomat 35(10), 3267–3278 (2021)
Ru̇zicka, M.: Electrorheological fuids: modeling and mathematical theory. Springer Science & Business Media, (2000)
Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)
Zeidler, E.: Nonlinear Functional Analysis and its Applications II/B. Springer-Verlag, New York (1990)
Zhao, D., Qiang, W.J., Fan, X.L.: On generalizerd Orlicz spaces $$L^{p(x)}({\Omega} )$$-. J. Gansu Sci. 9(2), 1–7 (1996)
Zhikov, V.V.E.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR-Izvestiya. 29(1), 33–66 (1987)
Zhikov, V.V.E.: Averaging of functionals of the calculus of variations and elasticity theory. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 50(4), 675–710 (1986)