Existence and uniqueness of weak solutions for a class of fractional superdiffusion equations

Springer Science and Business Media LLC - Tập 2017 Số 1 - 2017
Meilan Qiu1, Liquan Mei1, Gan-Shang Yang2
1School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China
2Department of Mathematics, Yunnan Nationalities University, Kunming 650031, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zola, RS, Lenzi, EK, Evangelista, LR, et al.: Exact solutions for a diffusion equation with a nonlinear external force. Phys. Lett. A 372, 2359-2363 (2008)

Liang, J, Ren, F, Qiu, W, et al.: Exact solutions for nonlinear fractional anomalous diffusion equations. Physica A 385, 80-94 (2007)

Ma, J, Liu, Y: Exact solutions for a generalized nonlinear fractional Fokker-Planck equation. Nonlinear Anal. 11, 515-521 (2010)

GaLychuk, VV, Datsko, BY: Pattern formation in a fractional reaction diffusion system. Physica A 365(2), 300-306 (2006)

Hilfer, R: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

Marin, M: On existence and uniqueness in thermoelasticity of micropolar bodies. C. R. Math. Acad. Sci. Paris 321(12), 475-480 (1995)

Marin, M: Some basic theorems in elastostatics of micropolar materials with voids. J. Comput. Appl. Math. 70(1), 115-126 (1996)

Marin, M, Marinescu, C: Thermoelasticity of initially stressed bodies. Asymptotic equipartition of energies. Int. J. Eng. Sci. 36(1), 73-86 (1998)

Zhang, Y, Benson, DA, Reeves, DM: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32, 561-581 (2009)

Podlubny, I: Fractional Differential Equations. Academic Press, New York (1999)

Kilbas, A, Srivastava, HM, Trujillo, JJ: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)

Mainardi, F, Luchko, Y, Pagnini, G: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153-192 (2001)

Liu, FW, Anh, V, Turner, I, et al.: Time fractional advection-dispersion equation. J. Appl. Math. Comput. 13, 233-246 (2003)

Gorenflo, R, Luchko, Y, Mainardi, F: Wright function as scale-invariant solutions of diffusion-wave equation. J. Comput. Appl. Math. 118, 175-191 (2000)

Li, XJ, Xu, CJ: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016-1051 (2010)

Zhao, J, Xiao, JY, Xu, Y: A finite element method for the multiterm time-space Riesz fractional advection-diffusion equations in finite domain. Abstr. Appl. Anal. 2013, Article ID 868035 (2013)

Fan, QY, Wang, WT, Yi, XJ: Anti-periodic solutions for a class of nonlinear nth-order differential equations with delays. J. Comput. Appl. Math. 230(2), 762-769 (2009)

Wang, WB, Shen, JH: Existence of solutions for anti-periodic boundary value problems. Nonlinear Anal. 70(2), 598-605 (2009)

Baleanu, D, Uǧurlu, E: Regular fractional dissipative boundary value problems. Adv. Differ. Equ. 2016, Article ID 175 (2016). doi: 10.1186/s13662-016-0883-6

Chen, AP, Chen, Y: Existence of solutions to anti-periodic boundary value problem for nonlinear fractional differential equations. Differ. Equ. Dyn. Syst. 19(3), 237-252 (2011)

Chen, AP, Tian, Y: Existence of three positive solutions to three-point boundary value problem of nonlinear fractional differential equation. Differ. Equ. Dyn. Syst. 18(3), 327-339 (2010)

Ahmad, B: Existence of solutions for fractional differential equations of order q ∈ ( 2 , 3 ] $q \in (2, 3]$ with anti-periodic boundary conditions. J. Appl. Math. Comput. 34, 385-391 (2010)

Bai, ZB, Lü, H: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495-505 (2005)

Zhang, SS: Positive solutions for boundary value problem of nonlinear fractional differential equations. Electron. J. Differ. Equ. 2006, 36 (2006)

Zhang, SS: Existence of positive solution for some class of nonlinear fractional differential equations. J. Math. Anal. Appl. 278, 136-148 (2003)

Qiu, ML, Mei, LQ: Existence of weak solutions for nonlinear time-fractional p-Laplace problems. J. Appl. Math. 2014, Article ID 231892 (2014)

Qiu, ML, Mei, LQ, Yang, GS, Yuan, XZ: Solutions for p-Laplace problems with nonlinear time-fractional differential equation. J. Inequal. Appl. 2014, Article ID 262 (2014)

Gorenflo, R, Mainardi, F: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1(2), 167-191 (1998)

Yang, Q, Liu, FW, Turner, I: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200-218 (2010)

Wu, GC, Baleanu, D, Xie, HP: Riesz Riemann-Liouville difference on discrete domains. Chaos 26, 084308 (2016)

Klafter, J, White, B, Levandowsky, M: Microzooplankton feeding behavior and the Lévy walk. In: Biological Motion. Lecture Notes in Biomathematics, pp. 281-293. Springer, Berlin (1990)

Caffarelli, LA, Vasseur, A: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171, 1903-1930 (2010)

Wu, GC, Baleanu, D, Deng, ZG, Zeng, SD: Lattice fractional diffusion equation in terms of a Riesz-Caputo difference. Physica A 438, 335-339 (2015)

El-Sayed, AMA, Gaber, M: On the finite Caputo and finite Riesz derivatives. Electron. J. Theor. Phys. 3, 81-95 (2006)

Muslih, SI, Agrawal, OP: Riesz fractional derivatives and fractional dimensional space. Int. J. Theor. Phys. 49, 270-275 (2010)

Adams, RA, John, JFF: Sobolev Spaces. Academic Press New York (2009)

Li, KT, Ma, YC, Wang, LZ: The Generalized Function and Sobolev Space. Xi’an Jiaotong University Press, Shaanxi (2008)

Corduneanu, C: Integral Equations and Applications. Cambridge University Press, New York (1973)

Ben Amar, A, Jeribi, A, Mnif, M: Some fixed point theorems and application to biological model. Numer. Funct. Anal. Optim. 29, 1-23 (2008)

Barroso, CS: Krasnosel’skij fixed point theorem for weakly continuous maps. Nonlinear Anal., Theory Methods Appl. 55, 25-31 (2003)

Ben Amar, A, Jeribi, A, Mnif, M: On a generalization of the Schauder and Krasnosel’skii fixed point theorems on Dunford-Pettis spaces and applications. Math. Methods Appl. Sci. 28, 1737-1756 (2005)

Latrach, K, Taoudi, MA, Zeghal, A: Some fixed point theorems of the Schauder and the Krasnosel’skii type and application to nonlinear transport equations. J. Differ. Equ. 221, 256-271 (2006)

Zhang, SS, Yang, GS: Some further generalizations of Ky Fan’s minimax inequality and its applications to variational inequalities. Appl. Math. Mech. 11(11), 1027-1034 (1990)