Existence and uniqueness of weak solutions for a class of fractional superdiffusion equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zola, RS, Lenzi, EK, Evangelista, LR, et al.: Exact solutions for a diffusion equation with a nonlinear external force. Phys. Lett. A 372, 2359-2363 (2008)
Liang, J, Ren, F, Qiu, W, et al.: Exact solutions for nonlinear fractional anomalous diffusion equations. Physica A 385, 80-94 (2007)
Ma, J, Liu, Y: Exact solutions for a generalized nonlinear fractional Fokker-Planck equation. Nonlinear Anal. 11, 515-521 (2010)
GaLychuk, VV, Datsko, BY: Pattern formation in a fractional reaction diffusion system. Physica A 365(2), 300-306 (2006)
Marin, M: On existence and uniqueness in thermoelasticity of micropolar bodies. C. R. Math. Acad. Sci. Paris 321(12), 475-480 (1995)
Marin, M: Some basic theorems in elastostatics of micropolar materials with voids. J. Comput. Appl. Math. 70(1), 115-126 (1996)
Marin, M, Marinescu, C: Thermoelasticity of initially stressed bodies. Asymptotic equipartition of energies. Int. J. Eng. Sci. 36(1), 73-86 (1998)
Zhang, Y, Benson, DA, Reeves, DM: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32, 561-581 (2009)
Podlubny, I: Fractional Differential Equations. Academic Press, New York (1999)
Kilbas, A, Srivastava, HM, Trujillo, JJ: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Mainardi, F, Luchko, Y, Pagnini, G: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153-192 (2001)
Liu, FW, Anh, V, Turner, I, et al.: Time fractional advection-dispersion equation. J. Appl. Math. Comput. 13, 233-246 (2003)
Gorenflo, R, Luchko, Y, Mainardi, F: Wright function as scale-invariant solutions of diffusion-wave equation. J. Comput. Appl. Math. 118, 175-191 (2000)
Li, XJ, Xu, CJ: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016-1051 (2010)
Zhao, J, Xiao, JY, Xu, Y: A finite element method for the multiterm time-space Riesz fractional advection-diffusion equations in finite domain. Abstr. Appl. Anal. 2013, Article ID 868035 (2013)
Fan, QY, Wang, WT, Yi, XJ: Anti-periodic solutions for a class of nonlinear nth-order differential equations with delays. J. Comput. Appl. Math. 230(2), 762-769 (2009)
Wang, WB, Shen, JH: Existence of solutions for anti-periodic boundary value problems. Nonlinear Anal. 70(2), 598-605 (2009)
Baleanu, D, Uǧurlu, E: Regular fractional dissipative boundary value problems. Adv. Differ. Equ. 2016, Article ID 175 (2016). doi: 10.1186/s13662-016-0883-6
Chen, AP, Chen, Y: Existence of solutions to anti-periodic boundary value problem for nonlinear fractional differential equations. Differ. Equ. Dyn. Syst. 19(3), 237-252 (2011)
Chen, AP, Tian, Y: Existence of three positive solutions to three-point boundary value problem of nonlinear fractional differential equation. Differ. Equ. Dyn. Syst. 18(3), 327-339 (2010)
Ahmad, B: Existence of solutions for fractional differential equations of order q ∈ ( 2 , 3 ] $q \in (2, 3]$ with anti-periodic boundary conditions. J. Appl. Math. Comput. 34, 385-391 (2010)
Bai, ZB, Lü, H: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495-505 (2005)
Zhang, SS: Positive solutions for boundary value problem of nonlinear fractional differential equations. Electron. J. Differ. Equ. 2006, 36 (2006)
Zhang, SS: Existence of positive solution for some class of nonlinear fractional differential equations. J. Math. Anal. Appl. 278, 136-148 (2003)
Qiu, ML, Mei, LQ: Existence of weak solutions for nonlinear time-fractional p-Laplace problems. J. Appl. Math. 2014, Article ID 231892 (2014)
Qiu, ML, Mei, LQ, Yang, GS, Yuan, XZ: Solutions for p-Laplace problems with nonlinear time-fractional differential equation. J. Inequal. Appl. 2014, Article ID 262 (2014)
Gorenflo, R, Mainardi, F: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1(2), 167-191 (1998)
Yang, Q, Liu, FW, Turner, I: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200-218 (2010)
Wu, GC, Baleanu, D, Xie, HP: Riesz Riemann-Liouville difference on discrete domains. Chaos 26, 084308 (2016)
Klafter, J, White, B, Levandowsky, M: Microzooplankton feeding behavior and the Lévy walk. In: Biological Motion. Lecture Notes in Biomathematics, pp. 281-293. Springer, Berlin (1990)
Caffarelli, LA, Vasseur, A: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171, 1903-1930 (2010)
Wu, GC, Baleanu, D, Deng, ZG, Zeng, SD: Lattice fractional diffusion equation in terms of a Riesz-Caputo difference. Physica A 438, 335-339 (2015)
El-Sayed, AMA, Gaber, M: On the finite Caputo and finite Riesz derivatives. Electron. J. Theor. Phys. 3, 81-95 (2006)
Muslih, SI, Agrawal, OP: Riesz fractional derivatives and fractional dimensional space. Int. J. Theor. Phys. 49, 270-275 (2010)
Adams, RA, John, JFF: Sobolev Spaces. Academic Press New York (2009)
Li, KT, Ma, YC, Wang, LZ: The Generalized Function and Sobolev Space. Xi’an Jiaotong University Press, Shaanxi (2008)
Corduneanu, C: Integral Equations and Applications. Cambridge University Press, New York (1973)
Ben Amar, A, Jeribi, A, Mnif, M: Some fixed point theorems and application to biological model. Numer. Funct. Anal. Optim. 29, 1-23 (2008)
Barroso, CS: Krasnosel’skij fixed point theorem for weakly continuous maps. Nonlinear Anal., Theory Methods Appl. 55, 25-31 (2003)
Ben Amar, A, Jeribi, A, Mnif, M: On a generalization of the Schauder and Krasnosel’skii fixed point theorems on Dunford-Pettis spaces and applications. Math. Methods Appl. Sci. 28, 1737-1756 (2005)
Latrach, K, Taoudi, MA, Zeghal, A: Some fixed point theorems of the Schauder and the Krasnosel’skii type and application to nonlinear transport equations. J. Differ. Equ. 221, 256-271 (2006)