Existence and uniqueness of positive solutions for three-point boundary value problem with fractional q-differences

Sihua Liang1, Jihui Zhang2
1College of Mathematics, Changchun Normal University, Changchun, PR China
2Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, PR China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338, 1340–1350 (2008)

El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A.: On the fractional-order logistic equation. Appl. Math. Lett. 20, 817–823 (2007)

El-Shahed, M.: Positive solutions for boundary value problem of nonlinear fractional differential equation. Abstr. Appl. Anal. 2007(10368), 8 (2007). doi: 10.1155/2007/10368

Lakshmikantham, V., Vatsala, A.S.: Basic theory of fractional differential equations. Nonlinear Anal. 69, 2677–2682 (2008)

Lakshmikantham, V., Vatsala, A.S.: General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett. 21, 828–834 (2008)

Lakshmikantham, V.: Theory of fractional functional differential equations. Nonlinear Anal. 69, 3337–3343 (2008)

Liang, S., Zhang, J.H.: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal. 71, 5545–5550 (2009)

Li, C.F., Luo, X.N., Zhou, Y.: Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Comput. Math. Appl. 59, 1363–1375 (2010)

Zhang, S.: Existence of solution for a boundary value problem of fractional order. Acta Math. Sci. 26, 220–228 (2006)

Zhou, Y.: Existence and uniqueness of fractional functional differential equations with unbounded delay. Int. J. Dyn. Syst. Differ. Equ. 1, 239–244 (2008)

Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Yverdon (1993)

Podlubny, I.: Fractional Differential Equations. Mathematics in Sciences and Engineering, vol. 198. Academic Press, San Diego (1999)

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Amsterdam, Elsevier (2006)

Jackson, F.H.: On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 46, 253–281 (1908)

Jackson, F.H.: On q-definite integrals. Quart. J. Pure Appl. Math. 41, 193–203 (1910)

Ernst, T.: The history of q-calculus and a new method. UUDM Rep. 2000:16 (2000). ISSN:1101-3591, Department of Mathematics. Uppsala University

Al-Salam, W.A.: Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. (2) 15, 135–140 (1966/1967)

Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 66, 365–370 (1969)

Rajković, P.M., Marinković, S.D., Stanković, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1(1), 311–323 (2007)

Atici, F.M., Eloe, P.W.: Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14(3), 333–344 (2007)

Ferreira, R.A.C.: Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 70, pp. 10 (2010)

Ferreira, R.A.C.: Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 61, 367–373 (2011)

Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Positive Solutions of Differential, Difference and Integral Equations. Kluwer, Dordrecht (1999)

Caballero Mena, J., Harjani, J., Sadarangani, K.: Existence and uniqueness of positive and nondecreasing solutions for a class of singular fractional boundary value problems. Bound. Value Probl. 2009, 421310 (2009). doi: 10.1155/2009/421310 , 10 pp.

Harjani, J., Sadarangani, K.: Fixed point theorems for weakly contractive mappings in partially ordered sets. Nonlinear Anal. 71, 3403–3410 (2009)

Nieto, J.J., Rodríguez-López, R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223–239 (2005)

Nieto, J.J., Rodríguez-López, R.: Fixed point theorems in ordered abstract spaces. Proc. Am. Math. Soc. 135(8), 2505–2517 (2007)

O’Regan, D., Petrusel, A.: Fixed point theorems for generalized contractions in ordered metric spaces. J. Math. Anal. Appl. 341, 1241–1252 (2008)

Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)