Existence and uniqueness of global weak solutions to a Cahn–Hilliard–Stokes–Darcy system for two phase incompressible flows in karstic geometry
Tài liệu tham khảo
Han, 2013, Two phase flows in karstic geometry, Math. Methods Appl. Sci.
Çeşmelioğlu, 2008, Analysis of time-dependent Navier–Stokes flow coupled with Darcy flow, J. Numer. Math., 16, 249, 10.1515/JNUM.2008.012
Badea, 2010, Numerical analysis of the Navier–Stokes/Darcy coupling, Numer. Math., 115, 195, 10.1007/s00211-009-0279-6
Boyer, 1999, Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptot. Anal., 20, 175
Liu, 2003, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys. D, 179, 211, 10.1016/S0167-2789(03)00030-7
Abels
Lowengrub, 1998, Quasi-incompressible Cahn–Hilliard fluids and topological transitions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 454, 2617, 10.1098/rspa.1998.0273
Bear, 1988
Jones, 1973, Low Reynolds-number flow past a porous spherical shell, Proc. Cambridge Philos. Soc., 73, 231, 10.1017/S0305004100047642
Saffman, 1971, On the boundary condition at the interface of a porous medium, Stud. Appl. Math., 1, 93, 10.1002/sapm197150293
Beavers, 1967, Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 197, 10.1017/S0022112067001375
Jäger, 2000, On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. Math., 60, 1111, 10.1137/S003613999833678X
Discacciati, 2002, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43, 57, 10.1016/S0168-9274(02)00125-3
Discacciati, 2003, Analysis of a domain decomposition method for the coupling of the Stokes and Darcy equations, 3
Discacciati, 2009, Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation, Rev. Mat. Complut., 22, 315, 10.5209/rev_REMA.2009.v22.n2.16263
Layton, 2002, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40, 2195, 10.1137/S0036142901392766
Cao, 2010, Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition, Commun. Math. Sci., 8, 1, 10.4310/CMS.2010.v8.n1.a2
Chen, 2010, Asymptotic analysis of the differences between the Stokes–Darcy system with different interface conditions and the Stokes–Brinkman system, J. Math. Anal. Appl., 368, 658, 10.1016/j.jmaa.2010.02.022
Cao, 2011, Analysis and finite element approximation of a coupled, continuum pipe-flow/Darcy model for flow in porous media with embedded conduits, Numer. Methods Partial Differential Equations, 27, 1242, 10.1002/num.20579
Chen, 2011, A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system, SIAM J. Numer. Anal., 49, 1064, 10.1137/080740556
Chen, 2013, Efficient and long-time accurate second-order methods for the Stokes–Darcy system, SIAM J. Numer. Anal., 51, 2563, 10.1137/120897705
Chidyagwai, 2009, On the solution of the coupled Navier–Stokes and Darcy equations, Comput. Methods Appl. Mech. Engrg., 198, 3806, 10.1016/j.cma.2009.08.012
Çeşmelioğlu, 2012, Existence of a weak solution for the fully coupled Navier–Stokes/Darcy-transport problem, J. Differential Equations, 252, 4138, 10.1016/j.jde.2011.12.001
Çeşmelioğlu, 2013, Time-dependent coupling of Navier–Stokes and Darcy flows, ESAIM: M2AN, 47, 539, 10.1051/m2an/2012034
Deimling, 1985
Abels, 2009, Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities, Comm. Math. Phys., 289, 45, 10.1007/s00220-009-0806-4
Feng, 2012, Analysis of a Darcy–Cahn–Hilliard diffuse interface model for the Hele–Shaw flow and its fully discrete finite element approximation, SIAM J. Numer. Anal., 50, 1320, 10.1137/110827119
Wise, 2010, Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations, J. Sci. Comput., 44, 38, 10.1007/s10915-010-9363-4
Han
Abels, 2009, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194, 463, 10.1007/s00205-008-0160-2
Zhao, 2009, Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids, Commun. Math. Sci., 7, 939, 10.4310/CMS.2009.v7.n4.a7
Gal, 2010, Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 401, 10.1016/j.anihpc.2009.11.013
Wang, 2013, Well-posedness of the Hele–Shaw–Cahn–Hilliard system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30, 367, 10.1016/j.anihpc.2012.06.003
Wang, 2012, Long-time behavior for the Hele–Shaw–Cahn–Hilliard system, Asymptot. Anal., 78, 217, 10.3233/ASY-2012-1092
Lowengrub, 2013, Analysis of a mixture model of tumor growth, European J. Appl. Math., 24, 691, 10.1017/S0956792513000144
Diegel
Triebel, 1978
Lions, 1972, Non-homogeneous Boundary Value Problems and Applications, vol. I, vol. 181
Grisvard, 1985, Elliptic Problems in Nonsmooth Domains, vol. 24
Lions, 1969
Temam, 1977, Navier–Stokes Equations. Theory and Numerical Analysis, vol. 2
Eyre, 1998, Unconditionally gradient stable time marching the Cahn–Hilliard equation, vol. 529, 39
Horgan, 1995, Korn's inequalities and their applications in continuum mechanics, SIAM Rev., 37, 491, 10.1137/1037123
Girault, 1986, Finite Element Methods for Navier–Stokes Equations, vol. 5
Showalter, 1997, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, vol. 49
Brézis, 1980, Nonlinear Schrödinger evolution equations, Nonlinear Anal., 4, 677, 10.1016/0362-546X(80)90068-1
Simon, 1987, Compact sets in the space Lp(0,T;B), Ann. Mat. Pura Appl. (4), 146, 65, 10.1007/BF01762360
Colli, 2007, Nonlinear evolution inclusions arising from phase change models, Czechoslovak Math. J., 57, 1067, 10.1007/s10587-007-0114-0