Existence and regularity of solutions in $$\alpha $$-norm for some partial functional integrodifferential equations in banach spaces

Issa Zabsonre1, Djendode Mbainadji1
1Université Joseph KI-ZERBO, Département de Mathématiques, Unité de Recherche et de Formation en Sciences Exactes et Appliquées, Ouagadougou 03, Burkina Faso

Tóm tắt

Từ khóa


Tài liệu tham khảo

Diao, B., Ezzinbi, K., Sy, M.: Existence results in the $$\alpha $$-norm for a class of neutral partial functional integro-differential equation. Afrika matematica 26(7), 1621–1635 (2015)

Desch, W., Grimmer, R., Schappacher, W.: Some considerations for linear integrodifferential equtions. J. Math. Anal. Appl. 104, 219–234 (1984)

Ezzinbi, K., Touré, H., Zabsonré, I.: Existence and regularity of solutions for some partial functional integrodifferential equations in Banach spaces. Nonlinear Anal. 70, 2761–2771 (2009)

Gala, S., Ragusa, M.A.: Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices. Appl. Anal. 95(6), 1271–1279 (2016)

Gala, S., Liu, Q., Ragusa, M.A.: A new regularity criterion for the nematic liquid crystal flows. Appl. Anal. 91(9), 1741–1747 (2012)

Grimmer, R., Pritchard, A.J.: Analytic resolvent operators for integral equations in a Banach space. J. Differ. Equ. 50(2), 234–259 (1983)

Grimmer, R.: Resolvent operators for integral equations in a Banach space. Trans. Am. Math. Soc. 273, 333–349 (1982)

Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Amsterdam (1983)

Ragusa, M.A.: Elliptic boundary value problem in vanishing mean oscillation hypothesis. Comment. Math. Univ. Carolin. 40(4), 651–663 (1999)

Travis, C.C., Webb, G.F.: Existence, stability, and compactness in the $$\alpha $$-norm for partial functional differential equations. Trans. Am. Math. Soc. 240, 129–143 (1978)