Existence and multiplicity of solutions for a Schrödinger–Kirchhoff type equation involving the fractional $$p\left( .,.\right)$$ -Laplacian operator in $${\mathbb {R}}^{N}$$
Tóm tắt
In this paper, by using variational approach, Mountain Pass Theorem and Krasnoselskii’s genus theory, we show the existence and multiplicity of solutions for a Schrödinger–Kirchhoff type equation involving the fractional
$$p\left( .,.\right)$$
-Laplacian in fractional Sobolev space with variable exponent. We also establish a Bartsch–Wang type compact embedding theorem for fractional Sobolev space with variable exponent.
Tài liệu tham khảo
Akkoyunlu, E., Ayazoglu, R.: Infinitely many solutions for the stationary fractional \(p\)-Kirchhoff problems in \({\mathbb{R}}^{N}\). Proc. Indian Acad. Sci. (Math. Sci.) 129(68), 1–19 (2019)
Ali, K.B., Hsini, M., Kefi, K., Chung, N.T.: On a nonlocal fractional \(p(.,)\)-Laplacian problem with competing nonlinearities. Complex Anal. Oper. Theory (2019). https://doi.org/10.1007/s11785-018-00885-9
Alves, C.O., Liu, S.: On superlinear \(p\left( x\right)\)-Laplacian equations in \({\mathbb{R}} ^{N}\). Nonlinear Anal. 73(8), 2566–2579 (2010)
Applebaum, D.: Lévy processes from probability to finance quantum groups. Notices Am. Math. Soc. 51, 1336–1347 (2004)
Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in \({\mathbb{R}} ^{N}\). J. Differ. Equ. 255, 2340–2362 (2013)
Ayazoglu Mashiyev, R., Alisoy, G.: Infinitely many solutions for a class of stationary Schrödinger equations with non-standard growth. Complex Var. Elliptic Equ. 63(4), 1–19 (2018)
Ayazoglu Mashiyev, R., Ekincioglu, I.: Electrorheological fluids equations involving variable exponent with dependence on the gradient via mountain pass techniques. Numer. Funct. Anal. Optim. 37(9), 1144–1157 (2016)
Ayazoglu Mashiyev, R., Ekincioglu, I., Alisoy, G.: Multiple small solutions for \(p(x)\)-Schrödinger equations with local sublinear nonlinearities via genus theory. Electron. J. Qual. Theory Differ. Equ. 75, 1–16 (2017)
Azroul, E., Benkirane, A., Shimi, M., Srati, M.: On a class of fractional \(p(x)\)-Kirchhoff type problems. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1603372
Bahrouni, A.: Comparison ans sub-supersolution principles for the fractional \(p(x)\)-Laplacians. J. Math. Anal. Appl. 458, 1363–1372 (2018)
Bahrouni, A., Rădulescu, V.D.: On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discret. Contin. Dyn. Syst. Ser. S 11(3), 379–389 (2018)
Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R}} ^{N}\). Commun. Partial Differ. Equ. 20, 1725–1741 (1995)
Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 1–21 (2001)
Brasco, L., Parini, E., Squassina, M.: Stability of variational eigenvalues for the fractional \(p\)-Laplacian. Discret. Contin. Dyn. Syst. 36, 1813–1845 (2016)
Caffarelli, L.: Non local equations, drifts and games. Nonlinear Partial Differ. Equ. Abel Symp. 7, 37–52 (2012)
Caffarelli, L., Valdinoci, E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial Differ. Equ. 41, 203–240 (2011)
Cammaroto, F., Vilasi, L.: On a Schrödinger–Kirchhoff-type equation involving the \(p(x)\)-Laplacian. Nonlinear Anal. 81, 42–53 (2013)
Caponi, M., Pucci, P.: Existence theorems for entire solutions of stationary Kirchhoff fractional \(p\)-Laplacian equations. Ann. Mat. Pura Appl. 6(195), 2099–2129 (2016)
Chang, K.C.: Critical Point Theory and Applications. Shanghai Scientific and Technology Press, Shanghai (1986)
Chen, J., Huang, X., Zhu, C.: Existence of multiple solutions for nonhomogeneous Schrödinger–Kirchhoff system involving the fractional \(p\)-Laplacian with sign-changing potential. Comput. Math. Appl. 77(10), 2725–2739 (2019)
Chermisi, M., Valdinoci, E.: A symmetry result for a general class of divergence form PDEs in fibered media. Nonlinear Anal. 73, 695–703 (2010)
Chung, N.T.: Eigenvalue problems for fractional \(p(x, y)\)-Laplacian equations with indefinite weight. Taiwan. J. Math. 23(5), 1–21 (2019)
Chung, N.T., Toan, H.Q.: On a class of fractional Laplacian problems with variable exponents and indefinite weights. Collect. Math. (2019). https://doi.org/10.1007/s13348-019-00254-5
Clarke, D.C.: A variant of the Lusternik–Schnirelmann theory. Indiana Univ. Math. J. 22, 65–74 (1972)
Corrêa, F.J.S.A., Figueiredo, G.M.: On a \(p\)-Kirchhoff equation via Krasnoselskii’s genus. Appl. Math. Lett. 22, 819–822 (2009)
Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)
Diening, L., Harjulehto, P., Hästö, P., Rů žička, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, vol. (2017), Springer, Heidelberg (2011)
Dipierro, S., Palatucci, G., Valdinoci, E.: Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche 68, 201–216 (2013)
Dugundji, J., Granas, A.: Fixed Point Theory I. Monografie Matematyczne. PWN-Polish Scientific, Warsaw (1982)
Fan, X.L., Zhang, Q.H.: Existence of solutions for \(p\left( x\right)\)-Laplacian Dirichlet problem. Nonlinear Anal. Theory Methods Appl. 52(8), 1843–1852 (2003)
Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142, 1237–1262 (2012)
Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonliear Anal. 94, 156–170 (2014)
Heidarkhani, S., Afrouzi, G.A., Moradi, S., Caristi, G., Ge, B.: Existence of one weak solution for \(p(x)\)-biharmonic equations with Navier boundary conditions. Z. Angew. Math. Phys. 73(67), 1–13 (2016)
Ho, K., Kim, Y.-H.: A priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional \(p (\cdot )\)-Laplacian. Nonlinear Analysis 188, 179–201 (2019)
Iannizzotto, A., Liu, S., Perera, K., Squassina, M.: Existence results for fractional \(p\)-Laplacian problems via Morse theory. Adv. Calc. Var. 9, 101–125 (2016)
Kajikiya, R.: A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J. Funct. Anal. 225(2), 352–370 (2005)
Kaufmann, U., Rossi, J., Vidal, R.: Fractional Sobolev spaces with variable exponents and fractional \(p(x)\)-Laplacians. Electron. J. Qual. Theory. Differ. Equ. 76, 1–10 (2017)
Kefi, K.: \(p(x)\)-Laplacian with indefinite weight. Proc. Am. Math. Soc. 139(12), 4351–4360 (2011)
Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslov. Math. J. 116(41), 592–618 (1991)
Krasnoselskii, M.A.: Topological methods in the theory of nonlinear integral equations. MacMillan, New York (1964)
Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)
Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)
Lee, J., Kim, J.-M., Kim, Y.-H.: Existence and multiplicity of solutions for Kirchhoff–Schrödinger type equations involving \(p(x)\)-Laplacian on the entire space \({\mathbb{R}} ^{N}\). Nonlinear Anal. R. World Appl. 45, 620–649 (2019)
Li, Q., Wub, X.: A new result on high energy solutions for Schrödinger–Kirchhoff type equations in \({\mathbb{R}} ^{N}\). Appl. Math. Lett. 30, 24–27 (2014)
Molica Bisci, G.: Sequence of weak solutions for fractional equations. Math. Res. Lett. 21, 241–253 (2014)
Molica Bisci, G., Rădulescu, V.D.: Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. Partial Differ. Equ. 54, 2985–3008 (2015)
Natanson, I.P.: Theory of Functions of a Real Variable. Nauka, Moscow (1950)
Nyamoradi, N.: Existence of three solutions for Kirchhoff nonlocal operators of elliptic type. Math. Commun. 18, 489–502 (2013)
Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in \({\mathbb{R}} ^{N}\) involving nonlocal operators. Rev. Mat. Iberoam. 32(1), 1–22 (2016)
Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, 65, Published for the Conference Board of the Mathematical Sciences, Washington (1986)
Rădulescu, V.D., Repovš, D.D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. Taylor & Francis Chapman and Hall/CRC, Boca Raton (2015)
Repovš, D.D.: Stationary waves of Schrödinger-type equations with variable exponent. Anal. Appl. 13(6), 645–661 (2015)
Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger in \({\mathbb{R}} ^{N}\). J. Math. Phys. 54(031501), 1–17 (2013)
Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)
Teng, K.: Multiple solutions for a class of fractional Schrödinger equations in \({\mathbb{R}} ^{N}\). Nonlinear Anal. 21, 76–86 (2015)
Thin, N.V., Thuy, P.T.: On existence solution for Schrödinger–Kirchhoff-type equations involving the fractional \(p\)-Laplacian in \({\mathbb{R}} ^{N}\). Compl. Var. Elliptic Equ. 3(64), 461–481 (2019)
Xiang, M., Molica Bisci, G., Tian, G., Zhang, B.: Infinitely many solutions for the stationary Kirchhoff problems involving the fractional \(p\)-Laplacian. Nonlinearity 29, 357–374 (2016)
Xiang, M., Zhang, B., Yang, D.: Multiplicity results for variable-order fractional Laplacian equations with variable growth. Nonlinear Anal. 178, 190–204 (2019)
Ye, Y., Tang, C.-L.: Multiple solutions for Kirchhoff-type equations in \({\mathbb{R}} ^{N}\). J. Math. Phys. 54(081508), 1–17 (2013)
Zeidler, E.: Nonlinear Functional Analysis and its Applications. Springer, New York, NY (1985)
Zhang, J., Tang, X., Zhang, W.: Existence of multiple solutions of Kirchhoff type equation with sign-changing potential. Appl. Math. Comput. 242, 491–499 (2014)