Existence and multiplicity of positive periodic solutions to Minkowski-curvature equations without coercivity condition

Journal of Mathematical Analysis and Applications - Tập 507 - Trang 125840 - 2022
Xingchen Yu1, Shiping Lu1, Fanchao Kong2
1School of Mathematics and Statistics, Nanjing University of information Science and Technology, Nanjing 210044, PR China
2School of Mathematics and Statistics, Anhui Normal University, Wuhu 241000, Anhui, PR China

Tài liệu tham khảo

Azzolini, 2016, On a prescribed mean curvature equation in Lorentz-Minkowski space, J. Math. Pures Appl., 106, 1122, 10.1016/j.matpur.2016.04.003 Bereanu, 2007, Existence and multiplicity results for some nonlinear problems with singular ϕ-Laplacian, J. Differ. Equ., 243, 536, 10.1016/j.jde.2007.05.014 Boscaggin, 2020, Positive periodic solutions to an indefinite Minkowski-curvature equation, J. Differ. Equ., 269, 5595, 10.1016/j.jde.2020.04.009 Boscaggin, 2020, Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight, Nonlinear Anal., 196, 10.1016/j.na.2020.111807 Coelho, 2012, Positive solutions of the Dirichlet problem for one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 12, 621, 10.1515/ans-2012-0310 Feltrin, 2019, Periodic solutions to parameter-dependent equations with a ϕ-Laplacian type operator, Nonlinear Differ. Equ. Appl., 26, 10.1007/s00030-019-0585-3 Fonda, 2017, On a singular periodic Ambrosetti-Prodi problem, Nonlinear Anal., 149, 146, 10.1016/j.na.2016.10.018 Fabry, 1986, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. Lond. Math. Soc., 18, 173, 10.1112/blms/18.2.173 Gurban, 2019, Positive radial solutions for multiparameter Dirichlet systems with mean curvature operator in Minkowski space and Lane-Emden type nonlinearities, J. Differ. Equ., 266, 5377, 10.1016/j.jde.2018.10.030 Gutiérrez, 2013, Non-autonomous saddle-node bifurcation in a canonical electrostatic MEMS, Int. J. Bifurc. Chaos, 23, 10.1142/S0218127413500880 Godoy, 2021, Existence and multiplicity of periodic solutions to differential equations with attractive singularities, Proc. R. Soc. Edinb., Sect. A, Math., 1 Coster, 2006 Sovrano, 2018, Ambrosetti-Prodi periodic problem under local coercivity conditions, Adv. Nonlinear Stud., 18, 169, 10.1515/ans-2017-6040 Yu, 2021, A singular periodic Ambrosetti-Prodi problem of Rayleigh equations without coercivity conditions, Commun. Contemp. Math. Yu, 2019, A multiplicity result for periodic solutions of Liénard equations with an attractive singularity, Appl. Math. Comput., 346, 183