Existence and multiplicity of positive periodic solutions to Minkowski-curvature equations without coercivity condition
Tài liệu tham khảo
Azzolini, 2016, On a prescribed mean curvature equation in Lorentz-Minkowski space, J. Math. Pures Appl., 106, 1122, 10.1016/j.matpur.2016.04.003
Bereanu, 2007, Existence and multiplicity results for some nonlinear problems with singular ϕ-Laplacian, J. Differ. Equ., 243, 536, 10.1016/j.jde.2007.05.014
Boscaggin, 2020, Positive periodic solutions to an indefinite Minkowski-curvature equation, J. Differ. Equ., 269, 5595, 10.1016/j.jde.2020.04.009
Boscaggin, 2020, Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight, Nonlinear Anal., 196, 10.1016/j.na.2020.111807
Coelho, 2012, Positive solutions of the Dirichlet problem for one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 12, 621, 10.1515/ans-2012-0310
Feltrin, 2019, Periodic solutions to parameter-dependent equations with a ϕ-Laplacian type operator, Nonlinear Differ. Equ. Appl., 26, 10.1007/s00030-019-0585-3
Fonda, 2017, On a singular periodic Ambrosetti-Prodi problem, Nonlinear Anal., 149, 146, 10.1016/j.na.2016.10.018
Fabry, 1986, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. Lond. Math. Soc., 18, 173, 10.1112/blms/18.2.173
Gurban, 2019, Positive radial solutions for multiparameter Dirichlet systems with mean curvature operator in Minkowski space and Lane-Emden type nonlinearities, J. Differ. Equ., 266, 5377, 10.1016/j.jde.2018.10.030
Gutiérrez, 2013, Non-autonomous saddle-node bifurcation in a canonical electrostatic MEMS, Int. J. Bifurc. Chaos, 23, 10.1142/S0218127413500880
Godoy, 2021, Existence and multiplicity of periodic solutions to differential equations with attractive singularities, Proc. R. Soc. Edinb., Sect. A, Math., 1
Coster, 2006
Sovrano, 2018, Ambrosetti-Prodi periodic problem under local coercivity conditions, Adv. Nonlinear Stud., 18, 169, 10.1515/ans-2017-6040
Yu, 2021, A singular periodic Ambrosetti-Prodi problem of Rayleigh equations without coercivity conditions, Commun. Contemp. Math.
Yu, 2019, A multiplicity result for periodic solutions of Liénard equations with an attractive singularity, Appl. Math. Comput., 346, 183