Existence and multiplicity of non-trivial solutions for fractional Schrödinger–Poisson systems with a combined nonlinearity

M. Soluki1, G. A. Afrouzi1, S. H. Rasouli2
1Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
2Department of Mathematics, Faculty of Basic Science, Babol Noshirvani University of Technology, Babol, Iran

Tóm tắt

In this paper, we are concerned with the following fractional Schrödinger–Poisson system: $$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle (-\Delta )^s u + V(x)u +\lambda \phi u=K(x){|u|}^ {q-2}u+ f(x,u), &{}\qquad \ x \in \mathbb {R}^3 \\ \displaystyle (-\Delta )^t\phi = u^2,&{} \qquad \ x \in \mathbb {R}^3\\ \end{array}\right. \end{aligned}$$ where $$\lambda >0$$ is a constant, $$s,t \in (0,1]$$ , $$2t+4s>3$$ , $$1

Tài liệu tham khảo

Albuquerque, F.S., Carvalho, J.L., Figueiredo, G.M., Medeiros, E.: On a planar non-autonomous Schrödinger–Poisson system involving exponential critical growth. Calc. Var. Partial Differ. Equ. 60, 1–30 (2021) Alves, C.O., Figueiredo, G.M.: Existence of positive solution for a planar Schrödinger–Poisson system with exponential growth. J. Math. Phys. 60(1), 011503, 13 (2019) Ambrosio, V.: An existence result for a fractional Kirchhoff–Schrödinger–Poisson system. Z. Angew. Math. Phys. 69(2), 30, 13 (2018) Ambrosio, V.: Multiplicity and concentration results for a class of critical fractional Schrödinger–Poisson systems via penalization method. Commun. Contemp. Math. 22(1), 1850078, 45 (2020) Ambrosio, V.: Multiplicity and concentration results for a fractional Schrödinger–Poisson type equation with magnetic field. Proc. R. Soc. Edinb. Sect. A 150, 655–694 (2020) Ambrosio, V.: Multiplicity and concentration results for fractional Schrödinger–Poisson equations with magnetic fields and critical growth. Potential Anal. 52, 565–600 (2020) Ambrosio, V.: Existence and concentration of nontrivial solutions for a fractional magnetic Schrödinger–Poisson type equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 21, 1023–1061 (2020) Applebaum, D.: Lévy processes From probability theory to finance and quantum groups. Not. Am. Math. Soc. 51, 1320–1331 (2004) Cotsiolis, A., Tavoularis, N.K.: Sharp Sobolev type inequalities for higher fractional derivatives. C. R. Math. Acad. Sci. Paris 335, 801–804 (2002) Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012) Duarte, R.C., Souto, M.A.S.: Fractional Schrödinger–Poisson equations with general nonlinearities. Elec. J. Diff. Equ 319, 1–19 (2016) Feng, X.: Nontrivial solution for Schrödinger–Poisson equations involving a fractional nonlocal operator via perturbation methods. Z. Angew. Math. Phys. 67, 1–10 (2016) Figueiredo, G.M., Siciliano, G.: Existence and asymptotic behaviour of solutions for a quasi-linear Schrödinger–Poisson system with a critical nonlinearity. Z. Angew. Math. Phys. 71(4), 130, 21 (2020) Li, Kexue: Existence of non-trivial solutions for nonlinear fractional Schrödinger–Poisson equations. Appl. Math. Lett. 72, 1–9 (2017) Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000) Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 56–108 (2002) Liu, X., Liu, J., Wang, Z.: Quasilinear elliptic equations via perturbation method. Proc. Am. Math. Soc. 141, 253–263 (2013) Liu, C.Y., Wang, Z.P., Zhou, H.S.: Asymptotically linear Schrödinger equation with potential vanishing at infinity. J. Differ. Equ. 245, 201–222 (2008) Rabinowitz, P.H.: Minmax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., vol. 65. Amer. Math. Soc., Providence (1986) Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006) Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princteon University Press, Princeton (1970) Sun, J.T., Chen, H.B., Nieto, J.J.: On ground state solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 252, 3365–3380 (2012) Sun, M., Su, J., Zhao, L.: Solutions of a Schrödinger–Poisson system with combined nonlinearities. J. Math. Anal. Appl. 442, 385–403 (2016) Teng, K.: Multiple solutions for a class of fractional Schrödinger equations in \(R^{N}\). Nonlinear Anal. Real World Appl. 21, 76–86 (2015) Wang, Z.Q.: Nonlinear boundary value problems with concave nonlinearities near the origin. Nonlinear Differ. Equ. Appl. 8, 15–33 (2001) Wang, Z.P., Zhou, H.S.: Positive solution for a nonlinear stationary Schrödinger–Poisson system in \(R^ 3\). Discrete Contin. Dyn. Syst. 18, 809–816 (2007)