Existence and Convergence Results for an Elastic Frictional Contact Problem with Nonmonotone Subdifferential Boundary Conditions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bai Y R, Migórski S, Zeng S D. A class of generalized mixed variational-hemivariational inequalities I: existence and uniqueness results. Comput Math Appl, 2020, 79: 2897–2911
Barboteu M, Bartosz K, Han W, Janiczko T. Numerical analysis of a hyperbolic hemivariational inequality arising in dynamic contact. SIAM J Numer Anal, 2015, 53: 527–550
Barboteu M, Bartosz K, Han W. Numerical analysis of an evolutionary variational-hemivariational inequality with application in contact mechanics. Comput Methods Appl Mech Eng, 2017, 318: 882–897
Bartosz K, Sofonea M. The Rothe method for variational-hemivariational inequalities with applications to contact mechanics. SIAM J Math Anal, 2016, 48: 861–883
Braides A, Chiado-Piat V, Defranceschi A. Homogenization of almost periodic monotone operators. Ann Inst H Poincare, Anal Nonlinear, 1992, 9: 399–432
Cojocaru M C, Matei A. Well-posedness for a class of frictional contact models via mixed variational formulations. Nonlinear Anal, 2019, 47: 127–141
Defranceschi A. An introduction to homogenization and G-convergence//School on Homogenization. Lecture notes of the courses held at ICTP, Trieste, September 6–17, 1993: 85–133
Denkowski Z, Migóorski S, Papageorgiou N S. An Introduction to Nonlinear Analysis: Theory. Boston, Dordrecht, London, New York: Kluwer Academic/Plenum Publishers, 2003
Fusco N, Moscariello G. On the homogenization of quasilinear divergence structure operators. Ann Mat Pura Appl, 1987, 146: 1–13
Han W, Sofonea M. Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. Studies in Advanced Mathematics 30. Americal Mathematical Society, Providence, RI-International Press, Somerville, MA, 2002
Han W. Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics. Math Mech Solids, 2018, 23: 279–293
Gasinóski L, Ochal A, Shillor M. Variational-hemivariational approach to a quasistatic viscoelastic problem with normal compliance, friction and material damage. Z Angew Math Phys, 2015, 34: 251–276
Filippakis M, Gasinński L, Papageorgiou N S. On the existence of positive solutions for hemivariational inequalities driven by the p-Laplacian. J Global Optim, 2005, 31: 173–189
Gasinński L. Evolution hemivariational inequalities with hysteresis. Nonlinear Anal, 2004, 57: 323–340
Liu Z H, Migóorski S, Ochal A. Homogenization of boundary hemivariational inequalities in linear elasticity. J Math Anal Appl, 2008, 340: 1347–1361
Liu Z H. Existence results for quasilinear parabolic hemivariational inequalities. J Differential Equations, 2008, 244: 1395–1409
Liu Z H, Motreanu D. A class of variational-hemivariational inequalities of elliptic type. Nonlinearity, 2010, 23: 1741–1752
Liu Z H, Motreanu D, Zeng S D. Generalized penalty and regularization method for differential variational-hemivariational inequalities. SIAM J Optim, 2021, 31: 1158–1183
Matei A. A mixed hemivariational-variational problem and applications. Comput Math Appl, 2019, 77: 2989–3000
Matei A. A variational approach via bipotentials for a class of frictional contact problems. Acta Appl Math, 2014, 134: 45–59
Matei A. An existence result for a mixed variational problem arising from Contact Mechanics. Nonlinear Anal, 2014, 20: 74–81
Matei A. Two abstract mixed variational problems and aplications in contact mechanics. Nonlinear Anal, 2015, 22: 592–603
Migórski S, Bai Y R, Zeng S D. A class of generalized mixed variational-hemivariational inequalities II: applications. Nonlinear Anal, 2019, 50: 633–650
Migórski S, Ochal A. A unified approach to dynamic contact problems in viscoelasticity. Journal of Elasticity, 2006, 83: 247–276
Migórski S, Ochal A, Sofonea M. Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Advances in Mechanics and Mathematics 26. New York: Springer, 2013
Migórski S, Zeng S D. A class of differential hemivariational inequalities in Banach spaces. J Global Optim, 2018, 72: 761–779
Migórski S, Zeng S D. Hyperbolic hemivariational inequalities controlled by evolution equations with application to adhesive contact model. Nonlinear Anal, 2018, 43: 121–143
Naniewicz Z, Panagiotopoulos P D. Mathematical Theory of Hemivariational Inequalities and Applications. New York, Basel, Hong Kong: Marcel Dekker, Inc, 1995
Panagiotopoulos P D. Nonconvex energy functions, hemivariational inequalities and substationary principles. Acta Mechanica, 1983, 42: 160–183
Panagiotopoulos P D. Hemivariational Inequalities, Applications in Mechanics and Engineering. Berlin: Springer-Verlag, 1993
Sofonea M, Matei A. Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Notes. Cambridge University Press, 2012
Sofonea M, Migórski S. Variational-Hemivariational Inequalities with Applications. Chapman & Hall/CRC, Monographs and Research Notes in Mathematics, Boca Raton, 2017
Zeng S D, Migórski S. A class of time-fractional hemivariational inequalities with application to frictional contact problem. Commun Nonlinear Sci, 2018, 56: 34–48
Zeng S D, Liu Z H, Migórski S. A class of fractional differential hemivariational inequalities with application to contact problem. Z Angew Math Phys, 2018, 69: 1–23
Zeng S D, Migórski S, Khan A A. Nonlinear quasi-hemivariational inequalities: existence and optimal control. SIAM J Control Optim, 2021, 59: 1246–1274
Zhikov V, Kozlov S, Oleinik O. Homogenization of Differential Operators and Integral Functionals. Berlin: Springer, 1995