Existence and Convergence Results for an Elastic Frictional Contact Problem with Nonmonotone Subdifferential Boundary Conditions

Yongjian Liu1, Stanisław Migórski2, Van Thien Nguyen3, Shengda Zeng4
1Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin, 537000, China
2College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, China
3Departement of Mathematics, FPT University, Education zone, Hoa Lac high tech park, Km29 Thang Long highway, Thach That ward, Hanoi, Vietnam
4Jagiellonian University in Krakow, Chair of Optimization and Control, ul. Lojasiewicza 6, 30348 Krakow, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allaire G. Shape Optimization by the Homogenization Method. Berlin: Springer, 2002

Bai Y R, Migórski S, Zeng S D. A class of generalized mixed variational-hemivariational inequalities I: existence and uniqueness results. Comput Math Appl, 2020, 79: 2897–2911

Barboteu M, Bartosz K, Han W, Janiczko T. Numerical analysis of a hyperbolic hemivariational inequality arising in dynamic contact. SIAM J Numer Anal, 2015, 53: 527–550

Barboteu M, Bartosz K, Han W. Numerical analysis of an evolutionary variational-hemivariational inequality with application in contact mechanics. Comput Methods Appl Mech Eng, 2017, 318: 882–897

Bartosz K, Sofonea M. The Rothe method for variational-hemivariational inequalities with applications to contact mechanics. SIAM J Math Anal, 2016, 48: 861–883

Braides A, Chiado-Piat V, Defranceschi A. Homogenization of almost periodic monotone operators. Ann Inst H Poincare, Anal Nonlinear, 1992, 9: 399–432

Cojocaru M C, Matei A. Well-posedness for a class of frictional contact models via mixed variational formulations. Nonlinear Anal, 2019, 47: 127–141

Dal Maso G. An Introduction to Γ-convergence. Boston, Basel, Berlin: Birkhäuser-Verlag, 1993

Defranceschi A. An introduction to homogenization and G-convergence//School on Homogenization. Lecture notes of the courses held at ICTP, Trieste, September 6–17, 1993: 85–133

Denkowski Z, Migóorski S, Papageorgiou N S. An Introduction to Nonlinear Analysis: Theory. Boston, Dordrecht, London, New York: Kluwer Academic/Plenum Publishers, 2003

Fusco N, Moscariello G. On the homogenization of quasilinear divergence structure operators. Ann Mat Pura Appl, 1987, 146: 1–13

Han W, Sofonea M. Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. Studies in Advanced Mathematics 30. Americal Mathematical Society, Providence, RI-International Press, Somerville, MA, 2002

Han W. Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics. Math Mech Solids, 2018, 23: 279–293

Gasinóski L, Ochal A, Shillor M. Variational-hemivariational approach to a quasistatic viscoelastic problem with normal compliance, friction and material damage. Z Angew Math Phys, 2015, 34: 251–276

Filippakis M, Gasinński L, Papageorgiou N S. On the existence of positive solutions for hemivariational inequalities driven by the p-Laplacian. J Global Optim, 2005, 31: 173–189

Gasinński L. Evolution hemivariational inequalities with hysteresis. Nonlinear Anal, 2004, 57: 323–340

Liu Z H, Migóorski S, Ochal A. Homogenization of boundary hemivariational inequalities in linear elasticity. J Math Anal Appl, 2008, 340: 1347–1361

Liu Z H. Existence results for quasilinear parabolic hemivariational inequalities. J Differential Equations, 2008, 244: 1395–1409

Liu Z H, Motreanu D. A class of variational-hemivariational inequalities of elliptic type. Nonlinearity, 2010, 23: 1741–1752

Liu Z H, Motreanu D, Zeng S D. Generalized penalty and regularization method for differential variational-hemivariational inequalities. SIAM J Optim, 2021, 31: 1158–1183

Matei A. A mixed hemivariational-variational problem and applications. Comput Math Appl, 2019, 77: 2989–3000

Matei A. A variational approach via bipotentials for a class of frictional contact problems. Acta Appl Math, 2014, 134: 45–59

Matei A. An existence result for a mixed variational problem arising from Contact Mechanics. Nonlinear Anal, 2014, 20: 74–81

Matei A. Two abstract mixed variational problems and aplications in contact mechanics. Nonlinear Anal, 2015, 22: 592–603

Migórski S, Bai Y R, Zeng S D. A class of generalized mixed variational-hemivariational inequalities II: applications. Nonlinear Anal, 2019, 50: 633–650

Migórski S, Ochal A. A unified approach to dynamic contact problems in viscoelasticity. Journal of Elasticity, 2006, 83: 247–276

Migórski S, Ochal A, Sofonea M. Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Advances in Mechanics and Mathematics 26. New York: Springer, 2013

Migórski S, Zeng S D. A class of differential hemivariational inequalities in Banach spaces. J Global Optim, 2018, 72: 761–779

Migórski S, Zeng S D. Hyperbolic hemivariational inequalities controlled by evolution equations with application to adhesive contact model. Nonlinear Anal, 2018, 43: 121–143

Naniewicz Z, Panagiotopoulos P D. Mathematical Theory of Hemivariational Inequalities and Applications. New York, Basel, Hong Kong: Marcel Dekker, Inc, 1995

Nečas J. Direct Methods in the Theory of Elliptic Equations. Berlin, Heidelberg: Springer, 2012

Panagiotopoulos P D. Nonconvex energy functions, hemivariational inequalities and substationary principles. Acta Mechanica, 1983, 42: 160–183

Panagiotopoulos P D. Inequality Problems in Mechanics and Applications. Boston: Birkhäuser, 1985

Panagiotopoulos P D. Hemivariational Inequalities, Applications in Mechanics and Engineering. Berlin: Springer-Verlag, 1993

Sofonea M, Matei A. Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Notes. Cambridge University Press, 2012

Sofonea M, Migórski S. Variational-Hemivariational Inequalities with Applications. Chapman & Hall/CRC, Monographs and Research Notes in Mathematics, Boca Raton, 2017

Svanstedt N. G-convergence of parabolic operators. Nonlinear Anal, 1999, 36: 807–842

Zeng S D, Migórski S. A class of time-fractional hemivariational inequalities with application to frictional contact problem. Commun Nonlinear Sci, 2018, 56: 34–48

Zeng S D, Liu Z H, Migórski S. A class of fractional differential hemivariational inequalities with application to contact problem. Z Angew Math Phys, 2018, 69: 1–23

Zeng S D, Migórski S, Khan A A. Nonlinear quasi-hemivariational inequalities: existence and optimal control. SIAM J Control Optim, 2021, 59: 1246–1274

Zhikov V, Kozlov S, Oleinik O. Homogenization of Differential Operators and Integral Functionals. Berlin: Springer, 1995