Existence Results for a System of Kirchhoff–Schrödinger–Maxwell Equations
Tóm tắt
In this paper, we study existence, nonexistence, and properties of solutions for some Kirchhoff–Schrödinger–Maxwell systems as (1.3). The solutions can be seen as saddle points of functionals which are unbounded both from above and from below.
Tài liệu tham khảo
Ambrosetti, A., Arcoya, D.: Remarks on non homogeneous elliptic Kirchhoff equations. NoDEA Nonlinear Differ. Equations Appl. 23, 57 (2016)
Ambrosetti, A., Arcoya, D.: Positive solutions of elliptic Kirchhoff equations. Adv. Nonlinear Stud. 17, 3–15 (2017)
Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)
Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J.L.: An \(L^1\)-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22, 241–273 (1995)
Bénilan, P., Brezis, H.: Nonlinear problems related to the Thomas-Fermi equation. J. Evol. Equations 3, 673–770 (2003). Dedicated to Philippe Bénilan
Boccardo, L.: Elliptic systems of Schrödinger type in the spirit of Benci-Fortunato. Adv. Nonlinear Stud. 15, 321–331 (2015)
Boccardo, L., Gallouët, T.: Nonlinear elliptic equations with right-hand side measures. Commun. Partial Differ. Equations 17, 641–655 (1992)
Boccardo, L., Orsina, L.: Existence results for Dirichlet problems in \(L^1\) via Minty’s lemma. Appl. Anal. 76, 309–317 (2000)
Boccardo, L., Orsina, L.: Regularizing effect for a system of Schrödinger–Maxwell equations. Adv. Calc. Var. 11, 75–87 (2018)
Durastanti, R.: Regularizing effect for some \(p\)-Laplacian systems. Nonlinear Anal. 188, 425–438 (2019)
Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15, 189–258 (1965)
Zhang, Q.: Existence of positive solution to Kirchhoff-Schrödinger–Poisson system with strong singular term. J. Math. Phys. 60, 041504 (2019)